PROVINCIA DI CUNEO COMUNE DI FOSSANO

PERMESSO DI COSTRUIRE IN DEROGA

AI SENSI DELLA Legge 106/2011, art. 5, commi9-14 per

"Ristrutturazione senza ampliamento"

"EX CINEMA ASTRA" AREA "8 BIS VIA NOVARA"

PROPRIETA'	PROGETTAZIONE

ANTONIOTTI Antonio

ANTONIOTTI Rosanna

ANTONIOTTI Elisabetta

Arch. Pier Giorgio VIDOTTO

Via Sant' Andrea, n.°70 12038 Savigliano (CN) Tel.Fax: 0172 / 713143 piergiorgio.vidotto@libero.it

Geom. Daniele Zaccaria

Via Sant' Andrea, n.º42 12038 Savigliano (CN) Tel.Fax : 328/2634779 daniele.zaccaria@libero.it

RELAZIONE PREVISIONALE DI CLIMA ACUSTICO				
ESEGUITO				
Arch. Pier Giorgio Vidotto DATA 18.03.2014	Geom. Daniele Zaccaria			

Disegni, calcoli, specifiche e qualsiasi altra informazione contenuta in questo documento sono di proprietà' dello Studio . Si diffida la riproduzione intera o parziale e/o la diffusione del contenuto, fatta eccezione per le persone della Vs società / ente cui necessiti prenderne visione

S.P.A.C. S.r.l. Ingegneria Strategica

ANGARAMO Ing. Gabriele

Sede Operativa: Via San Martino 1, 12040, Sant'Albano Stura (CN) - Tel. 0172 659001 Fax. 0172 294908

mail: g.angaramo@libero.it - spacingegneria@gmail.com Sede Legale: Via San Bernardo 19, 12045, Fossano (CN) Italy - Cod. Fisc. / P. IVA / Reg. imp. Cuneo 03226480048 - Capitale sociale € 50.000,00 Progetto / Commessa n.:

S-13-160

Doc. n.:

S-13-160-REL00-00.doc

Cliente:

ANTONIOTTI Rosanna

ANTONIOTTI Elisabetta

ANTONIOTTI dott. Antonio

COMUNE DI FOSSANO

VALUTAZIONE DEL CLIMA ACUSTICO REALIZZAZIONE EDIFICI PLURIFAMILIARE IN VIA NOVARA

Tecnico competente in acustica ambientale
D.D.a. 83-11 Aprile 2005
REGIONE PIEMONTE

03				
02				
01				
00	9-01-2014	Prima emissione	ANG	ANG/PAN
REV.	Data emissione	Descrizione	Elaborato	Verificato/Approvato

Indice

1 Introduzione		3
1.1 Copyright		3
2 Riferimenti normativi		4
3 Tipologia dell'insediamento,	ubicazione e contesto di insediamento	12
3.1 Ubicazione e contesto di	insediamento – elaborati grafici	12
4 Identificazione area di ricogni	izione – CLIMA ACUSTICO DELL'AREA	16
5 Identificazione della classifica	azione acustica definitiva dell'area di studio ai sensi dell'art. 6 della L	.R. n. 52/2000
17		
6 Monitoraggi acustici - Misi	ure acustiche sull'area di studio (D.M. Ambiente 16 marzo 1998 -	UNI 10855 del
31/12/1999 - UNI 9884 del 31/07/	/1997)	19
6.1 Campagna di misure		19
6.1.1 Misura A - Misura d	del 9 01 2014 - Diurno - Analisi in prossimità dell'area oggetto di s	studio h. 1,5 mt
(asta graduata)		19
6.1.2 Misura B - Misura d	lel 9 01 2014 - Notturno - Analisi in prossimità dell'area oggetto di s	studio h. 1,5 mt
(asta graduata)		19
7 Modello di calcolo per impatt	o viabilistico e ferroviario su facciata	20
8 Impatto del cantiere sulle aree	e limitrofe	23
9 Conclusioni		23
10 Allegati di certificazione		24
10.1 Requisiti tecnico/profes	ssionali Ing. Angaramo Gabriele - Tecnico Competente in acustica	- ai sensi della
legge n. 447/1995, art. 2, comm	ni 6 e 7	24
10.2 Strumentazione fonome	trica	25
10.3 Strumentazione di colla	udo (DPCM 5/12/1997 "requisiti acustici passivi degli edifici")	26
10.3.1 DODECAEDRO &	CASSA di FACCIATA	26
10.3.2 MACCHINA PER	IL CALPESTIO	26
10.3.3 VIBROMETRO		27
10.4 Modello di calcolo per l	'ambiente esterno - IMMI	28
10.5 Modelli di calcolo per l'	ambiente interno e per le stratigrafie	32
10.6 SONUS ACCA Softwar	re S.p.A.	32
10.7 INSUL		33

1 Introduzione

Il presente lavoro viene eseguito allo scopo di soddisfare le richieste della normativa vigente in materia di clima acustico ai sensi della L. 26.10.1995 N. 447, D.M. 16.03.1998 e L.R. 20 Ottobre 2000 n. 52.

Il documento viene richiesto dagli uffici tecnici competenti del Comune di FOSSANO

Figura 1 - Il comfort abitativo (Les Outils, Exemples de solutions acoustiques, May 2002)

1.1 Copyright

*Disegni architettonici inseriti nel documento di proprietà : ARCH. VIDOTTO - SAVIGLIANO

- *I materiali commerciali indicati nel documento sono vincolanti per l'impresa esecutrice. La variazione delle vendor list proposte deve essere concertata con il committente e il tecnico in acustica nonché con la direzione lavori generale.
- * Elaborati grafici, stralci di documentazione sia in digitale che in cartaceo vengono inseriti nel documento mettendo in chiara evidenza la ditta che commercializza il prodotto. Non viene apportata nessuna modifica ai documenti protetti da copyright.
- *E vietata in qualunque modo, carteceo-digitale e/o similari, la divulgazione e duplicazione del documento senza espressa autorizzazione scritta da parte dell' Ing. Angaramo Gabriele. Ogni copia e/o stralcio riprodotto non autorizzato in forma scritta sarà perseguito in base ai termini di legge.

2 Riferimenti normativi

L'inquinamento acustico in ambiente esterno ed abitativo è attualmente regolamentato in **Italia** dai seguenti provvedimenti legislativi:

Legge Quadro 26 ottobre 1995 n. 447 sull'inquinamento acustico d.P.C.M. 14 novembre 1997 Determinazione dei valori limite delle sorgenti sonore d.m. 16 marzo 1998 Tecniche di rilevamento e di misurazione dell'inquinamento acustico d.p.c.m. 5/12/1997 "Requisiti acustici passivi degli edifici"

Per quanto riguarda la Regione Piemonte, i provvedimenti legislativi di riferimento sono i seguenti:

Legge regionale 52/2000 Disposizioni per la tutela dell'ambiente in materia di inquinamento acustico

d.G.R. 6 agosto 2001 n. 85-3802 Criteri per la classificazione acustica del territorio

d.G.R. 2 febbraio 2004 n. 9-11616 Criteri per la redazione della documentazione di impatto acustico

d.G.R. 14 febbraio 2005 n. 46-14762 Criteri per la redazione della documentazione di clima acustico

La Legge Quadro sull'inquinamento acustico 26 ottobre 1995 n. 447 ed i provvedimenti attuativi collegati hanno riscritto in modo organico tutta la materia concernente l'approccio alle problematiche di inquinamento acustico in ambiente esterno ed abitativo, assegnando le competenze in materia ai diversi enti istituzionali e soggetti privati in modo da rendere completo il panorama legislativo.

La L.R. 52/2000 ha recepito su base regionale i contenuti della Legge Quadro 447/95 ed ha fissato precisi limiti temporali per le attività contemplate dalla Legge Quadro stessa ai diversi livelli istituzionali e per i privati.

Regolamento acustico Comune

Regolamento acustico tipologico

Documentazione a verifica della normativa sull'inquinamento acustico

Il presente Titolo definisce i casi per i quali l'approvazione di strumenti urbanistici esecutivi e il rilascio di Permessi di Costruire o atti equivalenti, permessi abilitativi all'uso di immobili e autorizzazioni all'esercizio di attività è subordinato alla presentazione dei seguenti documenti:

Valutazione Previsionale di Impatto Acustico;

Valutazione Previsionale di Clima Acustico;

Valutazione Previsionale e Relazione Conclusiva di rispetto dei Requisiti Acustici degli Edifici.

Valutazione Previsionale di Impatto Acustico

La predisposizione di una Valutazione Previsionale di Impatto Acustico (VPIA) è necessaria per il rilascio di Permessi di Costruire o atti equivalenti, permessi abilitativi all'uso di immobili, autorizzazioni all'esercizio relativi alla realizzazione, modifica o potenziamento delle seguenti tipologie di opere e attività (ove prevista, la VPIA deve essere predisposta ai fini della Dichiarazione di Inizio Attività):

opere soggette a Valutazione di Impatto Ambientale;

strade di tipo A, B, C, D, E ed F (secondo la classificazione del D.lgs. 285/92 e s.m.i.), aeroporti, aviosuperfici, eliporti, ferrovie ed altri sistemi di trasporto collettivo su rotaia; per ciò che concerne le strade di tipo D, E ed F si intende "modifica" la costruzione, anche in più lotti, di un tratto stradale, anche solo parzialmente fuori sede, con uno sviluppo complessivo superiore a 500 m lineari.

impianti ed infrastrutture adibiti alle attività di cui all'art. 3, lettere a) e b), del presente Regolamento - si ritengono escluse dal campo di applicazione le attività artigiane che forniscono servizi direttamente alle persone o producono beni la cui vendita o somministrazione è effettuata con riferimento diretto al consumatore finale (quali parrucchieri; manicure; lavanderie a secco; riparazione di calzature, beni di consumo personali o per la casa; confezione di abbigliamento su misura; pasticcerie, gelaterie; confezionamento e apprestamento occhiali, protesi dentari, ecc.) e le attività artigiane esercitate con l'utilizzo di attrezzatura minuta (quali assemblaggio rubinetti; giocattoli; valvolame; materiale per telefonia; particolari elettrici; lavorazioni e riparazioni proprie del settore orafo gioielliero, ecc.);

centri commerciali (con tale definizione si intendono esclusivamente i casi di cui all'art. 4, c. 1, lettera g del D.lgs. 114/98, ovvero dove più esercizi commerciali sono inseriti in una struttura a destinazione specifica e usufruiscono di infrastrutture comuni e spazi di servizio gestiti unitariamente, con somma delle superfici di vendita dei singoli esercizi superiore a 250 mq);

impianti ed infrastrutture di cui all'art. 3, lettere c) e d), del presente Regolamento;

circoli privati e pubblici esercizi di cui all'art. 5, comma 1, lettera c) della L. 287/91, ovvero dove la somministrazione di pasti e/o bevande, dolciumi e prodotti di gastronomia viene effettuata congiuntamente ad altre attività di trattenimento e svago;

Nella realizzazione, modifica o potenziamento di opere si intende rilevante da un punto di vista acustico, e dunque necessitante valutazione di impatto, tutto ciò che comporta l'introduzione di nuove sorgenti di rumore, la variazione dell'emissione sonora di sorgenti già esistenti, la modifica delle strutture edilizie all'interno delle quali possono situarsi sorgenti di rumore.

La predisposizione di una Valutazione Previsionale di Impatto Acustico è altresì necessaria per l'approvazione di strumenti urbanistici esecutivi di cui all'art. 32, L.R. 56/77, titoli abilitativi convenzionati e rispettive varianti o modifiche che prevedano le opere di cui al comma 1 del presente articolo, fatti salvi gli strumenti già adottati all'entrata in vigore del presente regolamento.

La Valutazione Previsionale di Impatto Acustico è una documentazione redatta ad opera di un Tecnico Competente in Acustica (ex L. 447/95, art.2) seguendo i "Criteri per la redazione della documentazione di impatto acustico di cui all'art. 3, comma 3, lett. c) e art.10 della L.R. 25 ottobre 2000 n. 52" approvati con D.G.R. N. 9-11616 del 02/02/2004; l'Amministrazione comunale si riserva di richiedere approfondimenti e integrazioni per casi di particolare criticità o complessità.

Le attività non soggette alla predisposizione di VPIA sono comunque tenute al rispetto delle norme in materia di inquinamento acustico in ambiente esterno e abitativo.

Valutazione Previsionale di Clima Acustico

La documentazione di Valutazione Previsionale di Clima Acustico deve essere allegata ai documenti per il rilascio del provvedimento abitativo edilizio, o atto equivalente, relativo alla costruzione di nuovi immobili di cui alle tipologie sotto elencate o al mutamento di destinazione d'uso di immobili esistenti, qualora da ciò derivi l'inserimento dell'immobile in una delle stesse tipologie.

Le tipologie di insediamento interessate sono:

nuovi insediamenti residenziali scuole ed asili di ogni ordine e grado; ospedali, case di cura e di riposo;

parchi pubblici urbani ed extraurbani, qualora la quiete costituisca un elemento di base per la loro fruizione.

La predisposizione di una Valutazione Previsionale di Clima Acustico, coordinata con la documentazione eventualmente redatta ai sensi dell'art. 23 del presente regolamento, è altresì necessaria per l'approvazione di strumenti urbanistici esecutivi di cui all'art. 32, L.R. 56/77, titoli abilitativi convenzionati e rispettive varianti o modifiche, che prevedano le opere di cui al comma 1 del presente articolo, fatti salvi gli strumenti urbanistici già adottati all'entrata in vigore del presente regolamento.

La Valutazione Previsionale di Clima Acustico è una documentazione redatta ad opera di un Tecnico Competente in Acustica Ambientale seguendo i "Criteri per la redazione della documentazione di clima acustico di cui all'art. 3, comma 3, lett. d) della L.R. 25 ottobre 2000 n. 52" approvati con D.G.R. N. 46-14762 del 14/02/2005; l'Amministrazione comunale si riserva di richiedere approfondimenti e integrazioni per casi di particolare criticità o complessità.

In caso la Valutazione Previsionale di Clima Acustico evidenzi una situazione di possibile superamento dei limiti vigenti, essa dovrà contenere anche una descrizione degli accorgimenti progettuali e costruttivi adottati per contenere il disagio all'interno degli ambienti abitativi, tenuto conto di quanto previsto ai sensi dell'art. 25 del presente regolamento, se applicabile.

Valutazione Previsionale e Relazione Conclusiva di rispetto dei Requisiti Acustici degli Edifici

La Valutazione Previsionale di rispetto dei Requisiti Acustici degli Edifici costituisce la documentazione acustica preliminare di una struttura edilizia e dei suoi impianti ed è necessaria a verificare che la progettazione tenga conto dei requisiti acustici degli edifici.

La Relazione Conclusiva di rispetto dei Requisiti Acustici degli Edifici costituisce la documentazione acustica finale di una struttura edilizia e dei suoi impianti ed attesta che le ipotesi progettuali (corrette alla luce di tutte le modifiche apportate in corso d'opera al progetto iniziale) circa il rispetto dei requisiti acustici degli edifici sono soddisfatte in opera.

La predisposizione della Valutazione Previsionale di rispetto dei Requisiti Acustici degli Edifici è necessaria nell'ambito delle procedure edilizie e autorizzative relative a edifici adibiti a residenza, uffici, attività ricettive, ospedali cliniche e case di cura, attività scolastiche a tutti i livelli, attività ricreative, culto e attività commerciali (o assimilabili) nei seguenti casi:

per il rilascio di Permessi di Costruire o atti equivalenti relativi a interventi di Nuovo Impianto, Completamento e Ristrutturazione Urbanistica ex art. 13, L.R. 56/77 e s.m.i. (ove non è richiesto il Permesso di Costruire la Valutazione del rispetto dei Requisiti Acustici Passivi deve essere predisposta ai fini della Denuncia di Inizio Attività);

per il rilascio di Permessi di Costruire o atti equivalenti relativi a interventi di Ristrutturazione Edilizia, Restauro e Risanamento Conservativo e Manutenzione Straordinaria ex art. 13, L.R. 56/77 e s.m.i., limitatamente per gli aspetti correlati alla realizzazione di nuovi impianti tecnologici o alla sostituzione di impianti esistenti (ove non è richiesto il Permesso di Costruire la Valutazione del rispetto dei Requisiti Acustici Passivi deve essere predisposta ai fini della Denuncia di Inizio Attività).

La Valutazione Previsionale del rispetto dei Requisiti Acustici degli Edifici è una documentazione redatta ad opera di un Tecnico Competente in Acustica Ambientale seguendo i criteri riportati in Allegato D; l'Amministrazione comunale si riserva di richiedere approfondimenti e integrazioni per casi di particolare criticità o complessità.

La Relazione Conclusiva di rispetto dei Requisiti Acustici degli Edifici è una dichiarazione asseverata redatta sulla base di collaudo acustico in opera o mediante autocertificazione da parte del Tecnico Competente in Acustica Ambientale congiuntamente al progettista, al costruttore e al direttore dei lavori.

Definizioni generali (rif. Regolamento Acustico Comune di Torino

attività rumorosa: attività causa di introduzione di rumore nell'ambiente abitativo o nell'ambiente esterno tale da provocare fastidio o disturbo al riposo od alle attività umane, pericolo per la salute umana, deterioramenti degli ecosistemi, dei beni materiali, dei monumenti, dell'ambiente abitativo, dell'ambiente esterno o tale da interferire con le legittime fruizioni degli ambienti stessi;

attività rumorosa a carattere temporaneo: qualsiasi attività rumorosa che si esaurisce in periodi di tempo limitati e/o legata ad ubicazioni variabili;

sorgenti sonore fisse: gli impianti tecnici degli edifici e le altre installazioni unite agli immobili anche in via transitoria il cui uso produca emissioni sonore; le infrastrutture stradali, ferroviarie, aeroportuali, marittime, industriali, artigianali, commerciali ed agricole; i parcheggi; le aree adibite a stabilimenti di movimentazione merci; i depositi dei mezzi di trasporto di persone e merci; le aree adibite ad attività sportive e ricreative;

sorgenti sonore mobili: tutte le sorgenti sonore non comprese nella lettera c);

valori limite assoluti di emissione: il valore massimo di rumore che può essere emesso da una sorgente sonora, misurato in prossimità della sorgente stessa;

valori limite di accettabilità/immissione: il valore massimo di rumore che può essere immesso da una o più sorgenti sonore nell'ambiente abitativo o nell'ambiente esterno, misurato in prossimità dei ricettori; i valori limite di immissione sono distinti in:

- valori limite assoluti, determinati con riferimento al livello equivalente di rumore ambientale;
- valori limite differenziali o limiti differenziali determinati con riferimento alla differenza tra il livello
 equivalente di rumore ambientale (misurato in presenza di tutte le sorgenti esistenti) ed il rumore residuo
 (misurato escludendo la specifica sorgente disturbante);

classificazione o zonizzazione acustica: la suddivisione del territorio in aree omogenee dal punto di vista della classe acustica; ad ogni classe acustica (e conseguentemente, ad ogni area) sono associati specifici livelli acustici massimi consentiti;

impatto acustico: gli effetti indotti e le variazioni delle condizioni sonore preesistenti in una determinata porzione di territorio, dovute all'inserimento di nuove infrastrutture, opere, impianti, attività o manifestazioni;

clima acustico: le condizioni sonore esistenti in una determinata porzione di territorio, derivanti dall'insieme di tutte le sorgenti sonore naturali ed antropiche;

requisiti acustici degli edifici: i requisiti stabiliti dal DPCM 5/12/97 che devono essere rispettati dalle componenti in opera e dagli impianti tecnologici degli edifici;

tecnico competente in acustica ambientale: la figura professionale cui è stato riconosciuto il possesso dei requisiti previsti dall'articolo 2, commi 6 e 7, della l. 447/1995.

Requisiti acustici passivi degli edifici – D.P.C.M. 5 dicembre 1997

Il 22 dicembre 1997 è stato pubblicato sulla Gazzetta Ufficiale (Serie generale n° 297) il testo del D.P.C.M. 5-12-1997 "Determinazione dei requisiti acustici passivi degli edifici".

art. 1)

Il Decreto è stato emanato in attuazione dell'art. 3 comma 1 lettera e) della legge 447 del 1995 (Legge quadro sull'inquinamento acustico).

Il Decreto riguarda la determinazione di:

- requisiti acustici di sorgenti sonore interne agli edifici
- requisiti acustici passivi degli edifici e dei loro componenti in opera al fine di ridurre l'esposizione umana al rumore Il Decreto non riguarda gli altri tipi di sorgenti sonore (strade, ferrovie ecc.). Per tali sorgenti viene fatto riferimento agli altri provvedimenti attuativi previsti dalla Legge 447.

art. 2)

Nell'Art. 2 e nell'Allegato A vengono fornite una serie di definizioni riguardanti le grandezze da considerare. Di seguito si espongono alcune considerazioni in merito alle varie voci.

Ambienti abitativi

Gli ambienti abitativi sono definiti all'art.2 comma 1 lettera b) della L. 447:

"ogni ambiente interno ad un edificio destinato alla permanenza di persone o di comunità ed utilizzato per le diverse attività umane, fatta eccezione per gli ambienti destinati ad attività produttive per i quali resta ferma la disciplina di cui al D. Lgs. 15 agosto 1991, n. 277, salvo per quanto concerne l'immissione di rumore da sorgenti sonore esterne ai locali in cui si svolgono le attività produttive".

Il DPCM 5-12-1997 classifica gli ambienti abitativi nelle seguenti categorie:

categoria A: edifici adibiti a residenza o assimilabili;

categoria B: edifici adibiti ad uffici e assimilabili;

categoria C: edifici adibiti ad alberghi, pensioni ed attività assimilabili;

categoria D: edifici adibiti ad ospedali, cliniche, case di cura e assimilabili;

categoria E: edifici adibiti ad attività scolastiche a tutti i livelli e assimilabili;

categoria F: edifici adibiti ad attività ricreative o di culto o assimilabili;

categoria G: edifici adibiti ad attività commerciali o assimilabili.

Si evidenzia che il DPCM 5-12-1997 classifica gli ambienti abitativi come "edifici" a differente destinazione d'uso, la definizione precedente invece sembra riguardare i singoli "locali".

Componenti degli edifici

Sono considerati componenti degli edifici sia le partizioni orizzontali (pareti ecc.) che le partizioni verticali (solai ecc.).

Servizi a funzionamento discontinuo

Vengono considerati i seguenti tipi di impianti:

- · ascensori;
- · scarichi idraulici;
- bagni;

- · servizi igienici;
- rubinetteria;

Servizi a funzionamento continuo

Vengono considerati i seguenti tipi di impianti:

- impianti di riscaldamento;
- impianti di aerazione;
- impianti di condizionamento;

Tempo di riverberazione

Il tempo di riverberazione (T60) è il tempo necessario perché un determinato suono decada di 60 dB all'interno di un locale. Il parametro varia al variare della frequenza considerata.

UNI EN ISO 3382: 2001 - Acustica - Misurazione del tempo di riverberazione di ambienti con riferimento ad altri parametri acustici;

UNI 10844: 1999 - Acustica – Determinazione della capacità di fonoassorbimento degli ambienti chiusi;

Potere fonoisolante apparente

Il potere fonoisolante apparente (R') caratterizza la capacità di una partizione realizzata in opera, divisoria tra due differenti ambienti, di abbattere i rumori aerei. Il parametro varia al variare della frequenza considerata.

Isolamento acustico standardizzato di facciata

L'isolamento acustico standardizzato di facciata (D2m,nT) caratterizza la capacità di una facciata di abbattere i rumori aerei provenienti dall'esterno. Il parametro varia al variare della frequenza considerata.

Il pedice "2m" indica che la misura del rumore esterno va eseguita a 2 metri dalla facciata stessa.

Il pedice "nT" indica che la misura deve essere normalizzata sulla base del tempo di riverberazione proprio dell'ambiente interno.

Livello di rumore di calpestio di solai normalizzato

Il livello di rumore di calpestio di solai normalizzato (L'n) caratterizza la capacità di un solaio realizzato in opera di abbattere i rumori impattivi (di calpestio).

Si valuta in sostanza azionando una macchina per il calpestio sul solaio da analizzare e misurando il livello di rumore percepito in un altro ambiente (in genere l'ambiente sottostante).

Di conseguenza più basso è il livello di rumore misurato migliori sono le prestazioni di isolamento del solaio.

LASmax

Per misurare il livello di rumore prodotto dagli impianti a funzionamento discontinuo il DPCM richiede di utilizzare il parametro Livello massimo di pressione sonora ponderata A con costante di tempo slow. (LASmax). Si tratta quindi di misurare il picco massimo (max) di rumore prodotto da un impianto.

LAeq

Per misurare il livello di rumore prodotto dagli impianti a funzionamento continuo il DPCM richiede di utilizzare il parametro Livello continuo equivalente di pressione sonora ponderata A (LAeq).

Si tratta quindi di misurare il livello continuo di rumore prodotto dall'impianto.

Misurazione del rumore prodotto da impianti tecnologici

Per la misurazione del rumore prodotto da impianti viene segnalato che le misure devono essere eseguite nell'ambiente nel quale il livello di rumore è più elevato. Tale ambiente deve essere diverso da quello in cui il rumore si origina.

Indici di valutazione

Come indicato precedentemente le grandezze misurate (R', D2mnT, L'n) variano al variare della frequenza considerata (Hz). In particolare vengono misurate le prestazioni di isolamento per 16 bande di frequenza differenti da 100 Hz a 3150 Hz. Esistono apposite procedure definite da norme tecniche per "mediare" questi 16 valori ed ottenere un unico "indice di valutazione". (R'w, D2mnTw, L'nw).

Per il calcolo dell'indice di potere fonoisolante apparente (R'w), dell'indice di isolamento acustico di facciata (D2mnTw) e dell'indice del livello di rumore di calpestio dei solai normalizzato (L'nw) il DPCM fa riferimento alle indicazioni riportate nella norma UNI 8270: 1987, parte 7.

Attualmente il riferimento normativo per il calcolo di R'w e D2mnTw è:

UNI EN ISO 717 – 1: Acustica - Valutazione dell'isolamento acustico in edifici e di elementi di edificio - Isolamento di rumori aerei;

per il calcolo di L'nw è UNI EN ISO 717 – 2: Acustica - Valutazione dell'isolamento acustico in edifici e di elementi di edificio - Isolamento dai rumori di calpestio.

Si annota che i due metodi di calcolo in sostanza differiscono molto poco uno dall'altro. Il metodo della UNI 8270 permette di calcolare l'indice di valutazione con uno scarto di 0,5 dB. Il metodo proposto dalla UNI EN ISO 717 -1 invece permette uno scarto di 1 dB.

art. 3) e ALLEGATO A - Valori Limite

		Parametri [dB]				
Categorie di ambienti abitativi	R'w	$D_{2m,nT,w} \\$	L'nw	L _{ASmax}	L_{Aeq}	
Edifici adibiti ad ospedali, cliniche, case di cura e assimilabili	55	45	58	35	25	
Edifici adibiti a residenze, alberghi, pensioni ed attività assimilabili	50	40	63	35	35	
Edifici adibiti ad attività scolastiche a tutti i livelli e assimilabili	50	48	58	35	25	
Edifici adibiti ad uffici, attività ricreative o di culto, attività commerciali o assimilabili	50	42	55	35	35	

I valori di R'w e D2mnTw e L'nw sono da intendersi come valori minimi consentiti.

I valori di L'nw, LASmax e LAeq sono da intendersi come valori massimi consentiti.

I valori di R'w sono riferiti a elementi di separazione tra differenti unità immobiliari.

I valori di D2mnTw sono riferiti a elementi di separazione tra ambienti abitativi e l'esterno.

I valori di L'nw sono riferiti a elementi di separazioni tra differenti ambienti abitativi.

Considerazioni sulle "unità immobiliari"

Di seguito si riportano due definizioni ricavate dalla legislazione nazionale in merito alle "unità immobiliari".

D. M. LL. PP. 14 giugno 1989, n. 236. (NB precedente al DPCM 5-12-1997) "Prescrizioni tecniche necessarie a garantire l'accessibilità, l'adattabilità e la visitabilità degli edifici privati e di edilizia residenziale pubblica sovvenzionata e agevolata, ai fini del superamento e dell'eliminazione delle barriere architettoniche."

Art. 2 commi b) e c):

Per unità ambientale si intende uno spazio elementare e definito, idoneo a consentire lo svolgimento di attività compatibili tra loro.

Per unità immobiliare si intende una unità ambientale suscettibile di autonomo godimento ovvero un insieme di unità ambientali funzionalmente connesse, suscettibile di autonomo godimento.

D.M. 2 gennaio 1998, n° 28 (NB successivo al DPCM 5-12-1997) "Regolamento recante norme in tema di costituzione del catasto dei fabbricati e modalità di produzione ed adeguamento della nuova cartografia catastale":

Art. 2 - L'unita' immobiliare e' costituita da una porzione di fabbricato, o da un fabbricato, o da un insieme di fabbricati ovvero da un'area, che, nello stato in cui si trova e secondo l'uso locale, presenta potenzialita' di autonomia funzionale e reddituale.

Considerate le definizioni sopra riportate resta non chiara l'applicabilità dei valori di R'w riportati nel Decreto per quanto riguarda i muri divisori tra due differenti aule scolastiche o tra due differenti camere di ospedale.

Per quanto riguarda la verifica dell'isolamento acustico di facciata le misurazioni devono essere eseguite per i singoli ambienti abitativi (sala, camera da letto, ecc.).

Nel caso la facciata esaminata presenti una bocchetta di aerazione non ostruita della superficie minima di 100 cm2, come ad esempio nei locali cucina dove siano installati apparecchi a fiamma libera, diventa praticamente impossibile rispettare i parametri definiti nel DPCM.

Per "aggirare il problema" è possibile non considerare i locali cucina come "ambienti abitativi". In tal caso non sarà necessario effettuare le misure. Nel caso si stiano considerando dei monolocali con angolo cottura il problema rimane aperto.

In merito ai rumori di calpestio le misurazioni devono essere eseguite tra differenti ambienti abitativi. Non è definito nel DPCM se gli ambienti abitativi in cui effettuare le misure debbano appartenere a differenti unità immobiliari o meno. Si segnala che la misurazione in opera del livello di rumore di calpestio all'interno della medesima unità immobiliare può risultare in alcuni casi particolarmente complicato a causa del fatto che gli ambienti possono essere tra loro collegati da vani scale o altri "ponti acustici".

Infine, anche per i rumori da impianti non è definito nel DPCM se gli ambienti abitativi in cui effettuare le misure debbano appartenere a differenti unità immobiliari o meno. Si segnala che il rispetto dei requisiti acustici all'interno della medesima unità immobiliare può risultare in alcuni casi particolarmente complicato.

Considerazioni sull'isolamento acustico di facciata

Si evidenzia che i valori di isolamento acustico di facciata definiti dal DPCM sono indipendenti dai livelli di rumore presenti all'esterno dell'edificio da realizzare. Di conseguenza i valori prescritti sono da considerarsi come valori "minimi" che l'edificio deve possedere.

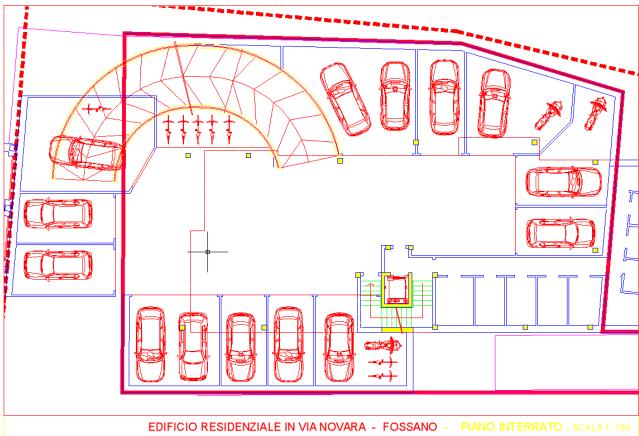
Nel caso l'immobile venga realizzato in prossimità di opere potenzialmente rumorose la L. 447 del 1995 (Legge quadro sull'acustica) all'art. 8 richiede che venga effettuata una valutazione di "clima acustico dell'area". Tale valutazione ha lo scopo di analizzare i livelli di rumore presenti e, se necessario, prescrivere adeguati interventi di mitigazione dei rumori. In particolare si può intervenire prescrivendo isolamenti di facciata superiori a quelli definiti nel DPCM 5-12-1997.

Conoscendo il livello di rumore esterno e ipotizzando un livello massimo di rumore interno all'edificio, il tecnico può stimare il valore minimo dell'isolamento acustico di facciata.

11 / 33

3 Tipologia dell'insediamento, ubicazione e contesto di insediamento

3.1 Ubicazione e contesto di insediamento – elaborati grafici


L'intervento in oggetto prevede la realizzazione di una struttura residenziale pluripiano in via Novara – Comune di Fossano.

L'area ad oggi è residenziale.

Figura 2 – localizzazione territoriale

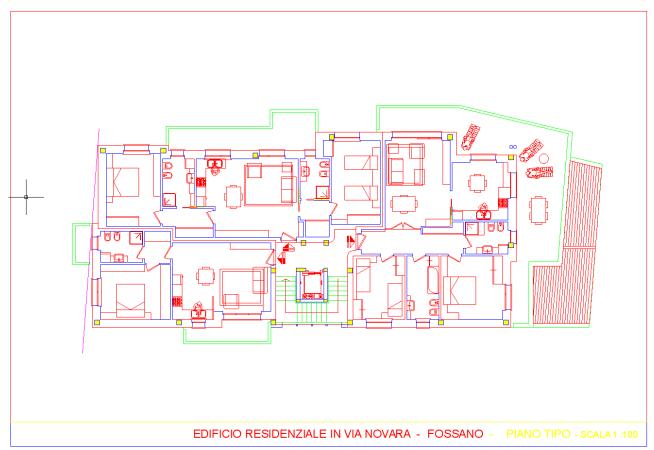


Figura 3 – planimetrie intervento

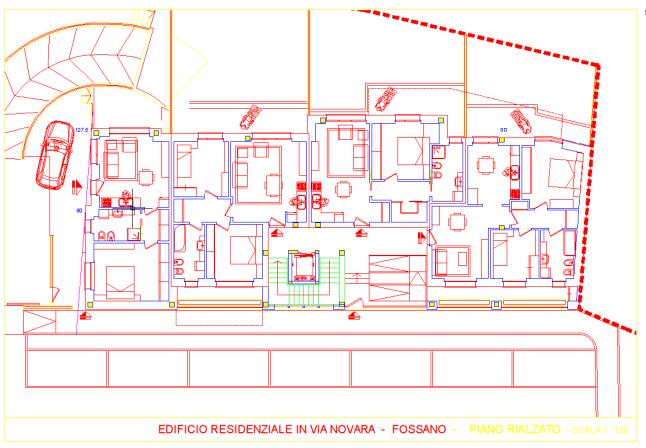


Figura 4 – planimetrie intervento - prospetto

Figura 5 – documentazione fotografica di area

4 Identificazione area di ricognizione – CLIMA ACUSTICO DELL'AREA

Per l'identificazione dell'area di ricognizione sono state valutate le rilevanti sorgenti sonore presenti nelle aree limitrofe alla struttura in progetto. R. baricentrico 100 mt

Figura 6 - superficie baricentrica di indagine

Nell'area prossima alla struttura in progetto non si verificano attività commerciali rilevanti.

Le dorsali stradali sono esclusivamente a servizio del concentrico cittadino.

5 Identificazione della classificazione acustica definitiva dell'area di studio ai sensi dell'art. 6 della L.R. n. 52/2000

La classificazione acustica del comune di Fossano vigente attribuisce all'area oggetto di studio la classe III, le aree limitrofe confinanti con l'area ricadono in classe III.

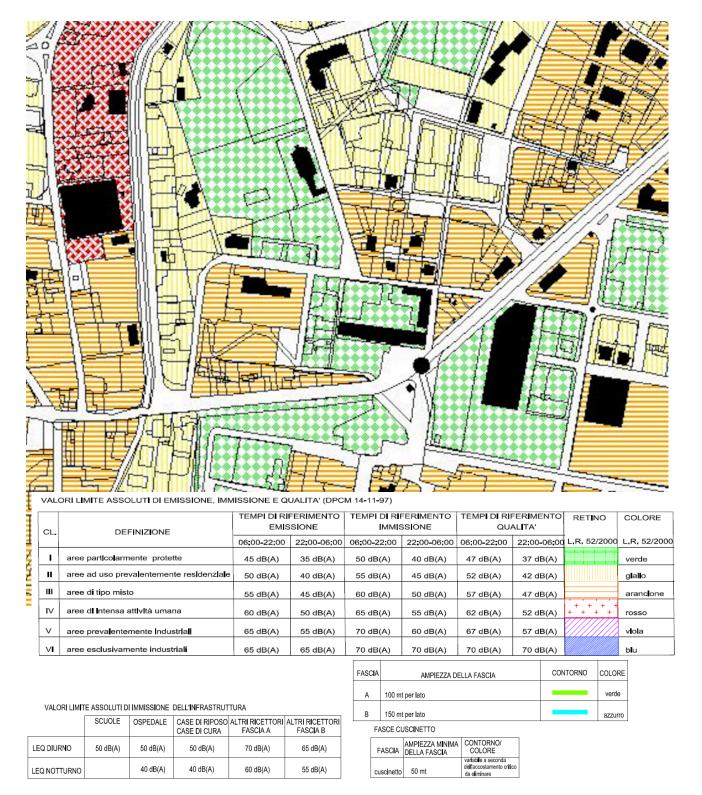


Figura 7 - zonizzazione acustica

Classi di destinazione d'uso del territorio	Limite diurno (6-22)	Limite notturno (22-6)	Limite diurno (6-22)	Limite notturno (22-6)
	Emissione Lc [dB(A)]	Emissione Lc [dB(A)]	Immissione Lc [dB(A)]	Immissione Lc [dB(A)]
Classe I "Aree particolarmente protette" Aree ospedaliere, scolastiche, destinate al riposo ed allo svago, aree residenziali rurali, di particolare interesse urbanistico, parchi pubblici, ecc.	45	35	50	40
Classe II "Aree destinate ad uso prevalentemente residenziale" Aree urbane interessate da traffico veicolare locale, con bassa densità di popolazione, con limitata presenza di attività commerciali ed assenza di attività industriali e artigianali	50	40	55	45
Classe III "Aree di tipo misto" Aree interessate da traffico veicolare locale e di attraversamento, con media densità di popolazione, con presenza di attività commerciali e uffici, con limitata presenza di attività artigianali e con assenza di attività industriali; aree rurali interessate da attività che impiegano macchine operatrici	55	45	60	50
Classe IV "Aree di intensa attività umana" Aree urbane interessate da intenso traffico veicolare, con alta densità di popolazione, con elevata presenza di attività commerciali e uffici, con presenza di attività artigianali; aree in prossimità di strade di grande comunicazione e di linee ferroviarie, aree portuali e aree con limitata presenza di piccole industrie	60	50	65	55
Classe V "Aree prevalentemente industriali" Aree interessate da insediamenti industriali e con scarsità di abitazioni	65	55	70	60
Classe VI "Aree esclusivamente industriali" Aree esclusivamente interessate da attività industriali e prive di insediamenti abitativi	65	65	70	70

Tabella 1 - limiti applicabili alla zonizzazione acustica vigente

6 Monitoraggi acustici – Misure acustiche sull'area di studio (D.M. Ambiente 16 marzo 1998 - UNI 10855 del 31/12/1999 - UNI 9884 del 31/07/1997)

6.1 Campagna di misure

Misura all'interno della perimetrazione del lotto oggetto di intervento

6.1.1 Misura A - Misura del 9 01 2014 - Diurno - Analisi in prossimità dell'area oggetto di studio h. 1,5 mt (asta graduata)

Data: 9 01 2014 Tempo di riferimento: diurno

Tempo di osservazione: dalle ore 8.00 - 20.00 (stazionarietà del sito)

Tempo di misura: pari al tempo di osservazione

Condizioni ambientali: sereno

Vel. e direzione del vento: inferiore alla sensibilità dello strumento (1m/s)

Calibrazione iniziale del fonometro: 94.0 dB Scostamento tra calibrazione finale e iniziale: -0.01

Osservatori presenti durante la misura: Ing. Sampò Giorgio

Note:

LAeq medio rilevato sul periodo di misura: 51,6 dB(A)

6.1.2 Misura B - Misura del 9 01 2014 - Notturno - Analisi in prossimità dell'area oggetto di studio h. 1,5 mt (asta graduata)

Data: 9 01 2014 Tempo di riferimento: diurno

Tempo di osservazione: dalle ore 22.00 - 1,00 (stazionarietà del sito)

Tempo di misura: pari al tempo di osservazione

Condizioni ambientali: sereno

Vel. e direzione del vento: inferiore alla sensibilità dello strumento (1m/s)

Calibrazione iniziale del fonometro: 94.0 dB Scostamento tra calibrazione finale e iniziale: -0.01

Osservatori presenti durante la misura: Ing. Sampò Giorgio

Note:

LAeq medio rilevato sul periodo di misura: 45,3 dB(A)

19 / 33

7 Modello di calcolo per impatto viabilistico e ferroviario su facciata

Visto il contesto e analizzato il panorama acustico dell'area non si ritiene necessario sviluppare un modello per la verifica delle immissioni da traffico veicolare e/o ferroviario.

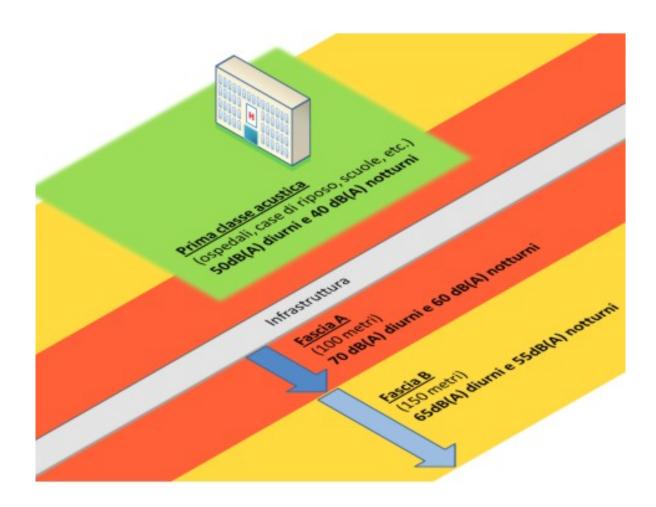


Figura 8 - limiti acustici verso le infrastrutture stradali

L'inquinamento acustico indotto dal traffico stradale è disciplinato dal D.P.R. n. 142/04 "Disposizioni per il contenimento e la prevenzione dell'inquinamento acustico derivante dal traffico veicolare" che, a seconda della classificazione stradale dell'infrastruttura, individua delle fasce territoriali al cui interno sono stabiliti dei limiti di rumorosità da rispettarsi.

Per le autostrade e le tangenziali, in particolare, il decreto definisce le seguenti fasce di pertinenza acustica ed i limiti di riferimento che la singola infrastruttura deve rispettare al loro interno:

fascia A, posta più vicina all'infrastruttura e della larghezza di 100 metri, con limiti di 70 dB(A) diurni e 60 dB(A) notturni;

fascia B, esterna alla precedente ed ampia 150 metri, con limiti di 65 dB(A) diurni e 55 dB(A) notturni.

(STRADE ESISTENTI E ASSIMILABILI) (ampliamenti in sede, affiancamenti e varianti)

TIPO DI STRADA	SOTTOTIPI A FINI ACUSTICI	Ampiezza fascia di	Scuole*, ospedali, case di cura e di riposo		Altri ricettori	
(secondo codice della strada)	(secondo norme CNR 1980 e direttive PUT)	pertinenza acustica (m)	Diurno dB(A)	Notturno dB(A)	Diurno dB(A)	Notturno dB(A)
- autostrada		100 (fascia A)	- 50	40	70	60
A - autostrada		150 (fascia B)		40	65	55
- extraurbana		100 (fascia A)	50	40	70	60
incipale	150 (fascia B)	50	40	65	55	
C - extraurbana secondaria C - extraurbana secondaria C (strade a carreggiate separate e tipo IV CNR 1980) C (tutte le altre strade extraurbane secondarie)	100 (fascia A)	50	40	70	60	
		150 (fascia B)			65	55
	100 (fascia A)	. 50	40	70	60	
		50 (fascia B)	50		65	55
- urbana di	Da (strade a carreggiate separate e interquartiere)	100	50	40	70	60
commento	Db (tutte le altre strade urbane di scommento)	100	50	40	65	55
- urbana di ıartiere		30	definiti dai comuni, nel rispetto dei valori riportati in tabella C allegata al D.P.C.M. in data 14 novembre 1997 e comunque in modo conforme a zonizzazione acustica delle aree urbane, come prevista dall'art. 6, comma 1, lettera a), della legge n. 447 del 1995.			
- locale		30				1995.

Figura 9 - D.P.R. n. 142/04 "Disposizioni per il contenimento e la prevenzione dell'inquinamento acustico derivante dal traffico veicolare" - tabella 2

Per quanto riguarda il traffico ferroviario si fa riferimento al DPR Decreto 18 novembre 1998, n. 459 (Gu 4 gennaio 1999 n. 2)

Regolamento recante norme di esecuzione dell'articolo 11 della legge 26 ottobre 1995, n. 447, in materia di inquinamento acustico derivante da traffico ferroviario

Articolo 1

Definizioni

- 1. Ai fini dell'applicazione del presente decreto, si intende per:
- a) infrastruttura: l'insieme di materiale rotabile, binari, stazioni, scali, parchi, piazzali e sottostazioni elettriche;
- b) infrastruttura esistente: quella effettivamente in esercizio alla data di entrata in vigore del presente decreto;
- c) infrastruttura di nuova realizzazione: quella non effettivamente in esercizio alla data di entrata in vigore del presente decreto;
- d) ambiente abitativo: ogni ambiente interno ad un edificio destinato alla permanenza di persone o comunita' ed utilizzato per le diverse attivita' umane, fatta eccezione per gli ambienti destinati ad attivita' produttive per i quali resta ferma la disciplina di cui al decreto legislativo 15 agosto 1991, n. 277, salvo per quanto concerne l'immissione di rumore da sorgenti sonore esterne a locali in cui si svolgono le attivita' produttive;
- e) ricettore: qualsiasi edificio adibito ad ambiente abitativo comprese le relative aree esterne di pertinenza, o ad attivita' lavorativa o ricreativa; aree naturalistiche vincolate, parchi pubblici ed aree esterne destinate ad attivita' ricreative ed allo svolgimento della vita sociale della collettivita'; aree territoriali edificabili gia' individuate dai vigenti piani regolatori generali e loro varianti generali, vigenti al momento della presentazione dei progetti di massima relativi alla

_____ 21 / 33

costruzione delle infrastrutture di cui all'articolo 2, comma 2, lettera b), ovvero vigenti alla data di entrata in vigore del presente decreto per le infrastrutture di cui all'articolo 2, comma 2, lettera a);

- f) affiancamento di infrastrutture di nuova realizzazione a infrastrutture esistenti: realizzazione di infrastrutture parallele o confluenti, tra le quali non esistono aree intercluse non di pertinenza delle infrastrutture stesse;
- g) variante: costruzione di un nuovo tratto in sostituzione di uno esistente, anche fuori sede, con uno sviluppo complessivo inferiore a 5 km;
- h) area edificata: raggruppamento continuo di edifici, anche se intervallato da strade, piazze, giardini o simili, costituito da non meno di 25 edifici adibiti ad ambiente abitativo o ad attivita' lavorativa o ricreativa;
- i) LAmax: il maggiore livello sonoro pesato A, misurato al passaggio del treno facendo uso della costante di tempo "veloce".

Articolo 3

Fascia di pertinenza

- 1. A partire dalla mezzeria dei binari esterni e per ciascun lato sono fissate fasce territoriali di pertinenza delle infrastrutture della larghezza di:
- a) m 250 per le infrastrutture di cui all'articolo 2, comma 2, lettera a), e per le infrastrutture di nuova realizzazione di cui all'articolo 2, comma 2, lettera b), con velocita' di progetto non superiore a 200 km/h. Tale fascia viene suddivisa in due parti: la prima, piu' vicina all'infrastruttura, della larghezza di m 100, denominata fascia A; la seconda, piu' distante dall'infrastruttura, della larghezza di m 150, denominata fascia B;
- b) m 250 per le infrastrutture di cui all'articolo 2, comma 2, lettera b), con velocita' di progetto superiore a 200 km/h.
- 2. Per le aree non ancora edificate interessate dall'attraversamento di infrastrutture in esercizio, gli interventi per il rispetto dei limiti di cui agli articoli 4 e 5 sono a carico del titolare della concessione edilizia rilasciata all'interno delle fasce di pertinenza di cui al comma 1.
- 3. Nel caso di realizzazione di nuove infrastrutture in affiancamento ad una esistente, la fascia di pertinenza si calcola a partire dal binario esterno preesistente.

Articolo 5

Infrastrutture esistenti e di nuova realizzazione con velocita' di progetto non superiore a 200 km/h

- 1. Per le infrastrutture esistenti, le loro varianti, le infrastrutture di nuova realizzazione in affiancamento di infrastrutture esistenti e le infrastrutture di nuova realizzazione con velocita' di progetto non superiore a 200 km/h, all'interno della fascia di cui all'articolo 3, comma 1, lettera a), del presente decreto, i valori limite assoluti di immissione del rumore prodotto dall'infrastruttura sono i seguenti:
- a) 50 dB(A) Leq diurno, 40 dB(A) Leq notturno per scuole, ospedali, case di cura e case di riposo; per le scuole vale il solo limite diurno;
- b) 70 dB(A) Leq diurno, 60 dB(A) Leq notturno per gli altri ricettori all'interno della fascia A di cui all'articolo 3, comma 1, lettera a);
- c) 65 dB(A) Leq diurno, 55 dB(A) Leq notturno per gli altri ricettori all'interno della fascia B di cui all'articolo 3, comma 1, lettera a).
- 2. Il rispetto dei valori di cui al comma l e, al di fuori della fascia di pertinenza, il rispetto dei valori stabiliti nella tabella C del decreto del Presidente del Consiglio dei Ministri 14 novembre 1997, e' verificato con misure sugli interi periodi di riferimento diurno e notturno, in facciata degli edifici ad 1 m dalla stessa ed in corrispondenza dei punti di maggiore esposizione, ovvero in corrispondenza di altri ricettori.

8 Impatto del cantiere sulle aree limitrofe

Non si verificano impatti verso ricettori sensibili nelle vicinanze. Non è necessaria la deroga per i superamenti dei limiti acustici.

9 Conclusioni

In riferimento alle analisi condotte si ritiene l'area conforme alla zonizzazione acustica con il clima acustico dell'area oggetto di studio.

La struttura sarà realizzata in modo conforme al D.P.C.M. 5/12/1997 "requisiti acustici passivi degli edifici". A fine opera verranno effettuati i collaudi strumentali per la validazione acustica della struttura,

Non sussistono criticità rilevanti che presuppongano prescrizioni ulteriori a quanto esposto nel documento e a quanto previsto dalle normative vigenti – si rimanda al fascicolo tecnico dell'impresa ogni approfondimento in merito ai requisiti acustici passivi di dettaglio.

Ing. Angaramo Gabriele

Ordine degli ingegneri della Provincia di Cuneo A1357 Tecnico competente in acustica REGIONE PIEMONTE D.D. n. 83 – 11 Aprile 2005

10 Allegati di certificazione

Requisiti tecnico/professionali Ing. Angaramo Gabriele - Tecnico Competente in acustica - ai sensi della legge n. 447/1995, art. 2, commi 6 e 7

Direzione TUTELA E RISANAMENTO AMBIENTALE - PROGRAMMAZIONE E GESTIONE RIFIUTI

Settore Risanamento acustico ed atmosferico

DETERMINAZIONE NUMERO: 83

DEL: 11/04/2005

Codice Direzione: 22

Codice Settore: 22.4

Oggetto

Legge 447/1995, art. 2, commi 6 e 7. Accoglimento e rigetto domande per lo svolgimento dell'attivita' di tecnico competente in acustica ambientale. Domande dal n. A567 al n. A578.

Visto l'art. 2, commi 6 e 7, della legge 26/10/1995, n. 447, con cui si stabilisce che per svolgere attività di tecnico competente in acustica ambientale deve essere presentata apposita domanda all'Assessorato regionale competente in materia, corredata da idonea documentazione comprovante l'aver svolto attività, in modo non occasionale, nel campo dell'acustica ambientale, da almeno quattro anni per i richiedenti in possesso del diploma di scuola media superiore ad indirizzo tecnico, o da almeno due anni per coloro che sono in possesso di laurea o diploma universitario ad indirizzo scientifico:

vista la deliberazione n. 81-6591 del giorno 4/3/1996, con cui la Giunta Regionale ha stabilito le modalità di valutazione delle domande per lo svolgimento dell'attività di tecnico competente in acustica ambientale, che recepisce, fra l'altro, la risoluzione adottata in data 25/1/1996 dai Presidenti delle Regioni e delle Province Autonome di Trento e Bolzano, concernente indicazioni applicative generali, finalizzate ad un'attuazione omogenea della norma in tutte le Regioni;

visto l'atto di indirizzo e coordinamento recante criteri generali per l'esercizio dell'attività del tecnico competente in acustica, emanato con D.P.C.M. 31/3/1998;

Dir. 22 Sett. 22.4 Segue Testo Determinazione Numero 💡 3 1 Anno 2005 rayina 2

visti gli ordini di servizio n. 5210/RIF del 24/4/96 e n. 7539/RIF del 3/7/97 con cui il Responsabile del Settore smaltimento rifiuti e risanamento atmosferico, ha istituito apposito Gruppo di lavoro per la valutazione delle domande stesse, come previsto dalla deliberazione sopra richiamata;

visto il verbale n. 47 della seduta del Gruppo di lavoro tenutasi il giorno 6/4/2005, nonchè le relative schede personali ad esso allegate, numerate progressivamente dal n. A567 al n. A578 conservato agli atti del Settore;

visti gli articoli 3 e 16 del D. Lgs. n. 29/1993, come modificato dal D. Lgs. n. 470/1993;

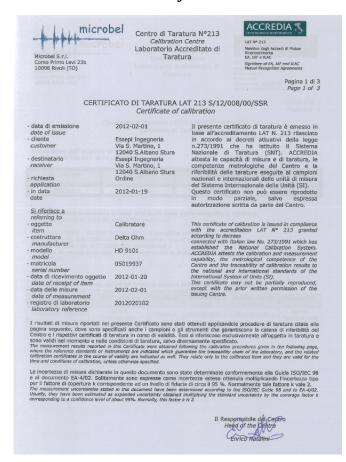
visto l'art. 22 della legge regionale n. 51/1997;

in conformità con gli indirizzi e i criteri disposti nella materia del presente provvedimento dalla Giunta Regionale con deliberazione n. 81-6591 del 4/3/1996,

DETERMINA

di accogliere le domande per lo svoigimento dell'attività di tecnico competente in acustica ambientate presentate da parte dei richiedenti elencati nell'allegato A, parte integrante della presente determinazione;

Avverso il presente provvedimento è ammesso ricorso innanzi al TAR Piemonte entro il termine di 60 giorni dalla notificazione.


La presente determinazione sarà pubblicata sul B.U. della Regione Piemonte ai sensi dell'art. 61 dello Statuto e dell'art. 14 del D.P.G.R. n. 8/R/2002.

Carla Cantarel

ID: TCARN36 2296-391-26624

10.2 Strumentazione fonometrica

Vengono di seguito riportate le caratteristiche della strumentazione utilizzata per le misurazioni in oggetto.

Fonometro:

Costruttore: Delta OHMModello: HD2110

• N° di serie: 05101330484

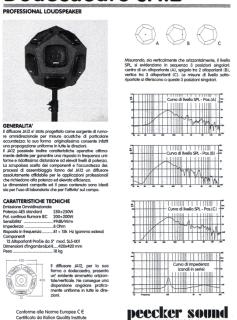
Microfono:

Costruttore: MGModello: MK221N° di serie: 30749

Calibratore:

Costruttore: Delta OHM
Modello: HD9101
N° di serie: 05019937

Strumentazione di misura utilizzata per i rilievi fonometrici

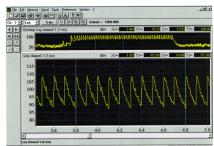

La strumentazione utilizzata è opportunamente calibrata all'inizio ed al termine di ogni ciclo di misure ed è periodicamente tarata presso centri di taratura SIT.

10.3 Strumentazione di collaudo (DPCM 5/12/1997 "requisiti acustici passivi degli edifici")

10.3.1 DODECAEDRO & CASSA di FACCIATA

Dodecaedro JA12

10.3.2 MACCHINA PER IL CALPESTIO


2 Zeta S.N.C. di Zattarin Ferdinando e Gianni impianti e attrezzature di precisione per l'acustica Via. 1ºMaggio nº4 – BASTA DI ROVION (PD)

TEL,049-9910723 fax 049-9910430

www.tzeta.it e-mallininfo@zeta.it
N. MATRICOLA 115

DATA COLLAUDO 22/01/07

Time between successive impacts: 100.176 ms

10.3.3 VIBROMETRO

CARATTERISTICHE TECNICHE:

- Misure di vibrazioni in classe 1 (ISO 8041).
- Acquisizione in parallelo di velocità, accelerazione e spostamento.
- Filtro incorporato per misure su macchine secondo ISO 10816 (10Hz-1kHz).
- Analisi in 1/1 ottava e 1/3 ottava in tempo reale .
- Analisi FFT in tempo reale.
- Misurazione velocità di rotazione in parallelo a vibrazioni con sonda tachimetrica .
- Bilanciamento delle masse rotanti .
- Vibrazioni Corpo Umano .
- interna di 3MB (equivalente alla misura di valori RMS e Picco ogni secondo per 24 ore).
- Interfaccia RS232.

10.4 Modello di calcolo per l'ambiente esterno - IMMI

Il modello utilizzato (IMMI for Windows, della casa tedesca Wölfel Meb-Systeme & Software GmbH) si basa su equazioni di tipo semi-empirico, ossia ottenute partendo da una raccolta di dati sperimentali supportati da fondamenti teorici.

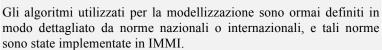
Si tratta dunque di relazioni semplici, che hanno il vantaggio di poter prendere in considerazione aspetti anche complessi della propagazione acustica (effetto del terreno, diffrazioni, riflessioni multiple) senza per questo richiedere una mole eccessiva di dati.

IMMI si avvale di tecniche di calcolo improntate alle teorie classiche del "ray-tracing" (tracciamento dei raggi) e delle "sorgenti immagine".

In sostanza, tali tecniche permettono di costruire delle funzioni di trasferimento parametriche fra sorgente e ricevitore (ray-tracing classico) o anche, al contrario, fra ricevitore e sorgente (ray tracing inverso, tecnica utilizzata da IMMI) attraverso le quali è possibile tenere in opportuno conto la divergenza geometrica e le attenuazioni in eccesso.

Il modello è basato su relazioni matematiche semi-empiriche del tipo

Li = Le + A


dove Li è il livello sonoro di immissione, Le è il livello di emissione della sorgente e A rappresenta la sommatoria degli effetti acustici dovuti al percorso fra sorgente e ricevitore (divergenza geometrica, riflessione, diffrazione...).


Il problema della previsione si suddivide quindi in due sotto-problemi:

modellizzazione della sorgente

modellizzazione della propagazione

I modelli per la previsione del rumore possono essere considerati come modelli "completi" quando trattano il problema della modellizzazione di entrambe gli aspetti, mentre sono da considerarsi "dedicati" ad un particolare aspetto quando trattano solo uno dei due sotto-problemi (o parti di essi).

Per esemplificare è possibile affermare che un modello come quello proposto dalla norma francese NMPB ("Nouvelle Methode pour la Prevision de Bruit routier") è "completo" (tratta cioè della modellizzazione del rumore da traffico veicolare sia in termini di descrizione delle sorgenti sia in termini di propagazione), mentre il modello ISO 9613 è "dedicato" al problema della propagazione in ambiente esterno, senza fare riferimento nè descrivere alcuna tecnica di modellizzazione specifica per le sorgenti.

Ora, se da un lato è di grande importanza che il modello sia il più possibile fedele alla situazione reale, è altrettanto importante, ai fini dell'applicazione delle leggi vigenti, che esso sia in qualche misura "normalizzato", ossia basato su algoritmi fondanti di indiscussa validità e testati attraverso seri confronti.

Molti Paesi, proprio allo scopo di ridurre quei margini, anche consistenti, di incertezza legati all'applicazione di algoritmi diversi e talvolta non sufficientemente validati, hanno messo a punto norme tecniche o linee guida che stabiliscono le regole matematiche fondamentali di un modello.

Tale obiettivo è stato ritenuto di grande importanza per più motivi:

Ridurre i margini di variabilità nei risultati;

Semplificare il lavoro dei professionisti, che dovendo "applicare" in termini ingegneristici i principi dell'acustica devono trovare "strumenti di lavoro" sufficientemente pratici;

Offrire modelli di calcolo validi per il particolare contesto nazionale.

Il presente lavoro è stato condotto utilizzando l' algoritmo di cui abbiamo parlato sopra (ISO 9613-2) del quale facciamo seguire una sintetica descrizione.

Modello ISO 9613

La norma internazionale ISO 9613 è dedicata alla modellizzazione della propagazione acustica nell'ambiente esterno, ma non fa riferimento alcuno a sorgenti specifiche di rumore (traffico, rumore industriale...), anche se è invece esplicita nel dichiarare che non si applica al rumore aereo (durante il volo dei velivoli) e al rumore generato da esplosioni di vario tipo. L'Unione Europea ha scelto tale norma come riferimento per la modellizzazione del rumore industriale.

E' dunque una norma di tipo ingegneristico rivolta alla previsione dei livelli sonori sul territorio, che prende origine da una esigenza nata dalla norma ISO 1996 del 1987, che richiedeva la valutazione del livello equivalente ponderato "A" in condizioni meteorologiche "favorevoli alla propagazione del suono1"; la norma ISO 9613 permette, in aggiunta, il calcolo dei livelli sonori equivalenti "sul lungo periodo" tramite una correzione forfettaria.

La prima parte della norma (ISO 9613-1:1993) tratta esclusivamente il problema del calcolo dell'assorbimento acustico atmosferico, mentre la seconda parte (ISO 9613-2:1996) tratta in modo complessivo il calcolo dell'attenuazione acustica dovuta a tutti i fenomeni fisici di rilevanza più comune, ossia:

la	divergenza	geometrica;

l'assorbimento atmosferico;

29 / 33

¹ E' noto che le condizioni favorevoli alla propagazione del suono sono assimilabili a condizioni di "sotto-vento" (downwind, DW) e di inversione termica.

l'effetto del terreno: le riflessioni da parte di superfici di vario genere;

l'effetto schermante di ostacoli;

l'effetto della vegetazione e di altre tipiche presenze (case, siti industriali).

La norma ISO, come abbiamo già rimarcato, non si addentra nella definizione delle sorgenti, ma specifica unicamente criteri per la riduzione di sorgenti di vario tipo a sorgenti puntiformi.

In particolare, viene specificato come sia possibile utilizzare una sorgente puntiforme solo qualora sia rispettato il seguente criterio:

d > 2 Hmax

dove d è la distanza reciproca fra la sorgente e l'ipotetico ricevitore, mentre Hmax è la dimensione maggiore della sorgente.

L'equazione che permette di determinare il livello sonoro LAT(DW) in condizioni favorevoli alla propagazione in ogni punto ricevitore è la seguente:

LAT(DW) = Lw + Dc - A

dove Lw è la potenza sonora della sorgente (espressa in bande di frequenza di ottava) generata dalla generica sorgente puntiforme, Dc è la correzione per la direttività della sorgente e A l'attenuazione dovuti ai diversi fenomeni fisici di cui sopra, espressa da:

A = Adiv + Aatm + Agr + Abar + Amisc

con Adiv attenuazione per la divergenza geometrica, Aatm attenuazione per l'assorbimento atmosferico, Agr l'attenuazione per effetto del terreno, Abar l'attenuazione di barriere, Amisc l'attenuazione dovuta agli altri effetti non compresi in quelli precedenti.

La condizione di propagazione ottimale, corrispondente alle condizioni di "sottovento" e/o di moderata inversione termica (tipica del periodo notturno), è definita dalla ISO 1996-2 nel modo seguente:

Direzione del vento compresa entro un angolo di \pm 45° rispetto alla direzione individuata dalla retta che congiunge il centro della sorgente sonora dominante alla regione dove è situato il ricevitore, con il vento che spira dalla sorgente verso il ricevitore;

Velocità del vento compresa fra 1 e 5 m/s, misurata ad una altezza dal suolo compresa fra 3 e 11 m.

Allo scopo di calcolare un valore medio di lungo-periodo LAT(LT), la norma ISO 9613 propone di utilizzare la seguente relazione:

LAT(LT) = LAT(DW) - Cmet

dove Cmet è una correzione di tipo meteorologico derivante da equazioni approssimate che richiedono una conoscenza elementare della situazione locale.

$$Cmet = 0 per dp < 10 (hs + hr)$$

Cmet =
$$C0 [1 - 10(hs + hr)/dp]$$
 per $dp > 10 (hs + hp)$

dove hs è l'altezza della sorgente dominante, hr è l'altezza del ricevitore e dp la proiezione della distanza fra sorgente e ricevitore sul piano orizzontale.

C0 è una correzione che dipende dalla situazione meteo locale e può variare in una gamma limitata (0 - 5 dB): la ISO consiglia che debba essere un parametro determinato dall'autorità locale.

Per quanto riguarda le attenuazioni aggiuntive dovute alla presenza di vegetazione, di siti industriali o di gruppi di case, la ISO 9613 propone alcune relazioni empiriche per il calcolo, che pur avendo una limitata validità possono essere utili in casi particolari.

Un argomento molto più importante è la possibilità di determinare una incertezza associata alla previsione: a questo proposito la ISO ipotizza che, in condizioni favorevoli di propagazione (sottovento, DW) e tralasciando l'incertezza con cui si può determinare la potenza sonora della sorgente sonora, nonchè problemi riflessioni o schermature, l'accuratezza associabile alla previsione di livelli sonori globali sia quella presentata nella tabella sottostante.

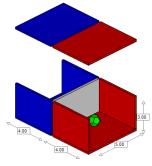
Altezza media di ricevitore e sorgente [m]	Distanza	Distanza
	0 < d < 100 m	100 m < d < 1000 m
0 < h < 5	± 3 dB	± 3 dB
5 < h < 30	± 1 dB	± 3 dB

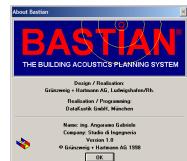
Naturalmente, la corrispondente accuratezza associabile su misure sul lungo periodo può essere molto maggiore.

La ISO 9613 suppone che i livelli sonori in condizioni non favorevoli alla propagazione siano trascurabili, laddove la NMPB cerca di individuare una situazione "media", che tenga effettivamente conto del disturbo verso l'individuo sul lungo periodo.

E' importante ricordare che l'attenzione posta alle condizioni meteo è dovuta alla consapevolezza di una influenza assolutamente determinante di tali condizioni nella propagazione a distanza: a titolo di illustrazione di questo fenomeno riportiamo una tabella estratta dalla NMPB che riassume i risultati sperimentali di misure del livello equivalente su 10 minuti ottenuti su un terreno piatto, con una sorgente puntiforme e per una grande varietà di condizioni meteorologiche.

Distanza sorgente-ricevitore [m]	Scarti tra i livelli minimi e massimi [dBA]	Deviazione standard [dBA]
160	18.6	4.4
320	26.8	8.4
640	37.8	11.2


Per quanto i valori in tabella siano stati ottenuti su un periodo molto breve, i valori corrispondenti ottenuti su periodi più lunghi restano comunque soggetti a variazioni assai rilevanti.


10.5 Modelli di calcolo per l'ambiente interno e per le stratigrafie

Calculation of Sound Insulation in Buildings

The BASTIAN® software is intended for calculation of sound insulation in buildings according to DS/EN 12354. All sound transmitting elements and systems, which are relevant for the individual room-to-room situation, are taken into consideration.

BASTIAN® calculates the following (given in third-octave bands and as single number values according to the DS/EN ISO 717-series):

airborne sound insulation between rooms according to DS/EN 12354-1

impact sound insulation between rooms according to DS/EN 12354-2

airborne sound insulation against outdoor noise according to DS/EN 12354-3

As a supplement to BASTIAN® we offer a database with acoustic data for Scandinavian building constructions.

BASTIAN® Auralisation makes the airborne sound insulation audible for various indoor and outdoor sound sources in dependence of the sound absorption characteristics of the receiving room. It is a pure software solution and needs no additional hardware besides the internal 16-bit sound card and an external stereo amplifier.

New features in BASTIAN® 2.1:

Calculation of the sound insulation by heavy double walls as separating and flanking elements

Extended number of junction types

Calculation of interior sound pressure levels for airborne sound transmission inside a building and from the outside

Alternative calculation procedures for the structural reverberation time in-situ

Extended handling of frequency spectra (copying and pasting of spectra via the clipboard)

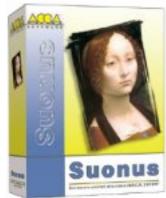
Extended and updated database on elements and sound sources

10.6 SONUS ACCA Software S.p.A.

SuoNus è lo strumento per lo studio puntuale e complessivo dell'isolamento acustico.

Permette il controllo degli indici di progettazione

SuoNus esegue il calcolo e il controllo dei seguenti indici:


R'w: indice del potere fonoisolante apparente delle partizioni verticali e orizzontali fra ambienti;

D2m,nT,w: indice di valutazione dell'isolamento acustico di facciata normalizzato rispetto al tempo di riverberazione;

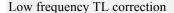
L'n,w: indice di valutazione del livello di pressione sonora di calpestio normalizzato sia per ambienti sovrapposti che per ambienti adiacenti;


T60: tempo di riverberazione dei locali.

Il programma consente la verifica della rispondenza dell'isolamento acustico di progetto alle prescrizioni del D.P.C.M. 5/12/1997 attraverso gli indici di valutazione oppure mediante l'analisi per frequenze centrali in bande di terzi di ottava.

10.7 INSUL

Single Panels

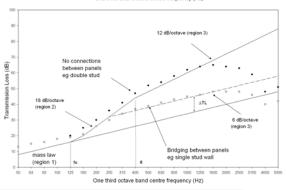

The sound transmission through a single panel can be approximated to a good degree of accuracy knowing only the mass per unit area (m) and the Modulus of Elasticity (E) of the panel. At low and mid frequencies the transmission loss (TL) is calculated from the well known mass law.

This predicts $TL = 20 \log (mf) - 48 dB (1)$

At higher frequencies the coincidence effect reduces the sound transmission and the transmission loss is given by $TL = 20 \log (mf) + 10 \log (f/fc)-44 dB (2)$

Where fc is the critical frequency (which can be calculated from E) and is the loss factor.

For thick heavy panels such as Brick or Concrete additional transmission takes place due to shear waves and the TL at high frequencies is reduced. INSUL takes this effect into account.


At low frequencies the radiation efficiency of a finite sized partition is reduced and the measured transmission loss is greater than the simple mass law. This effect is more pronounced for elements such as windows which are often tested with small areas. However even for normal tests

measured transmission loss for 18mm thick wood fibre board

Critical frequency fic

predicted by equation 2

Critical frequency
fic

carried out to ISO 140 with an area of 10-12m² the effect is significant at the lowest test frequencies. INSUL can take account of this effect.

Double Panels

INSUL predicts the transmission loss of double panel systems in 4 different frequency regions.

region 1

At low frequencies the transmission loss is determined primarily by the mass law. The TL increases at 6 dB/octave but INSUL can account for the inefficient radiation of low frequencies (link to section on single panels).

region 2

Above the mass-air-mass resonance frequency of the partition (fo) determined by the mass of the panels and the air gap, the TL increases at 18 dB/octave as the two sides become decoupled.

region 3

When the cavity width becomes comparable to a wavelength at frequency fl the cavity modes couple the panels together and the TL increases at 12 dB/octave.

region 4

Solid connections act as sound bridges between the two panels and the TL is limited to a constant amount above the mass law, and increases at only 6 dB/octave