Comune di FOSSANO – FOSSANO FUTURA allegato A3

Progetto preliminare opere di urbanizzazione RELAZIONE ILLUSTRATIVA E TECNICA

Sommario

1	Rife	rimento normativo	3
2	Des	crizione dell'intervento	5
	2a Des	crizione generale	5
3	Scel	te progettuali	6
	3.a	Idrologia ed idraulica, situazione esistente	6
	3.b	Idrologia ed idraulica situazione in progetto	14
	3.c	Acquedotto	16
	3.d	fognatura nera	17
	3e irrig	gazione	18
	3f met	ano	20
	3g reti	enel, telecom, IP	20
	3h pav	rimentazioni e rilevati	20
	3i calc	estruzzi e copriferro	25
	3j Sezi	one stradale	26
	3k trad	ciato e profilo longitudinale	29
	3l viab	ilità non motorizzata	31
	3m pa	rcheggi e varie	31
4	Fatt	ibilità dell'intervento	32
	4.a	Indagini geologiche e geotecniche	32
	Des	crizione dell'opera	32
	Mod	dellazione geologica	32
	Cara	atterizzazione geotecnica	34
	Con	clusioni	37
	4.b	Accertamenti di natura ambientale e vincoli vari	37
	4.c	Interferenze di altri servizi	37
5	Acq	uisizioni e disponibilità di aree	38
	5.a	Espropriazioni	38

	5.b	Cave di prestito	38
		Posizionamento cantieri	
6	Indi	irizzi per la redazione del progetto definitivo	38
	6.a	Problematiche	38
7	Cro	noprogramma dei lavori	38
		icazioni per l'accessibilità, l'utilizzo e la manutenzione delle opere, degli impianti e servi	
es	istenti		39

1 Riferimento normativo

Decreto Legislativo 12 aprile 2006, n. 163 "Codice dei contratti pubblici relativi a lavori, servizi e forniture in attuazione delle direttive 2004/17/CE e 2004/18/CE"

Nuovo codice della strada e relativo regolamento di attuazione come modificato da D.P.R. 16 settembre 1996, n. 610

Decreto 5 novembre 2001 n. 6792 e 22 aprile 2004"Norme funzionali e geometriche per la costruzione delle strade"

Decreto 19 aprile 2006 recante "Norme funzionali e geometriche per la costruzione delle intersezioni stradali"

Norme CNR 150/1992 "Norme sull'arredo funzionale delle strade urbane"

Bozza di Decreto Min Infrastrutture e Trasporti "Norme tecniche per la disciplina della costruzione e manutenzione delle infrastrutture stradali"

Norme tecniche per le costruzioni 2008

Circolare illustrativa NTC 2008 C.SS.LL.PP

D.M. LL.PP. 18 febbraio 1992 N. 223 (G.U. 16-3-1992, n. 63) "Regolamento recante istruzioni tecniche per la progettazione, l'omologazione e l'impiego delle barriere stradali di sicurezza." Aggiornato con D.M. 21 giugno 2004, n. 2367 (G.U. n.182 del 5.8.04) "Aggiornamento del decreto 18 febbraio 1992, n. 223 e successive modificazioni"

DIRETTIVA MINISTERO INFRASTRUTTURE E TRASPORTI 25 AGOSTO 2004 (G.U. 6-9-2004, n. 209) "Criteri di progettazione, installazione, verifica e manutenzione dei dispositivi di ritenuta nelle costruzioni stradali."

Agenzia interregionale per il fiume PO Piano per l'Assetto Idrogeologico" (P.A.I., 2001)

Norme per gli impianti elettrici

Legge 03/08/2007, n. 123 "Misure in tema di tutela della salute e della sicurezza sul lavoro e delega al Governo per il riassetto e la riforma della normativa in materia"

D.Lgs. 09/04/2008, n. 81 "Attuazione dell'art. 1 della Legge 03/08/2007, n. 123, in materia di tutela della salute e della sicurezza sul lavoro"

Legge 01/03/1968 n. 186 "Disposizioni concernenti la produzione di materiali, apparecchiature, macchinari, installazioni impianti elettrici ed elettronici"

Legge 18/10/1977 n. 791 – Direttiva della CEE sulla sicurezza del materiale elettrico – Gazzetta Ufficiale n. 298 del 02 Novembre 1977;

Legge 28/06/1986 n. 339 – Nuove norme per la disciplina della costruzione e dell'esercizio di linee elettriche aeree esterne;

D.M. 21/03/1988 – Approvazione delle norme tecniche per la progettazione, l'esecuzione e l'esercizio delle linee elettriche aeree esterne;

D.M. 22/01/2008 n. 37 "Riordino delle disposizioni in materia di attività di installazione degli impianti all'interno degli edifici"

D.Lgs. 04/12/1992 n. 476 "Attuazione della direttiva 89/336/CEE del consiglio del 3 maggio 1989, in materia di ravvicinamento delle legislazioni degli stati membri relative alla compatibilità elettromagnetica, modificata dalla direttiva 92/31/CEE del consiglio del 28 aprile 1992.

D.Lgs. 25/11/96 n. 626 Attuazione della direttiva 93/68/CEE in materia di marcatura CE del materiale elettrico destinato ad essere utilizzato entro taluni limiti di tensione.

D.Lgs. 31/07/97 n. 277 Modificazioni al decreto legislativo 25 novembre 1996, n. 626, recante attuazione della direttiva 93/68/CEE in materia di marcatura CE del materiale elettrico destinato ad essere utilizzato entro taluni limiti di tensione.

NORME DEL COMITATO ELETTROTECNICO ITALIANO (C.E.I.)

C.E.I. 11-4 (1989) fasc. 1192 - Esecuzione linee elettriche aeree esterne

C.E.I. EN 60439-1 (17-13/1 - 2000) fasc. 5862 e successive varianti "Apparecchiature assiemate di protezione e di manovra per bassa tensione (quadri BT). Parte 1: Apparecchiature soggette a prove di tipo (AS) e apparecchiature parzialmente soggette a prove di tipo (ANS)

C.E.I. EN 60439-3 (17-13/3 – 1997) fasc. 3445C e successive varianti "Apparecchiature assiemate di protezione e di manovra per bassa tensione (quadri BT). Parte 3: Prescrizioni particolari per apparecchiature assiemate di protezione e di manovra destinate ad essere installate in luoghi dove personale non addestrato ha accesso al loro uso. Quadri di distribuzione (ASD)

C.E.I. 17-43 (2000) fasc. 5756 e successive varianti "Metodo per la determinazione delle sovratemperature, mediante estrapolazione, per le apparecchiature assiemate di protezione e di manovra per bassa tensione (quadri BT) non di serie (ANS)

C.E.I. 20-22/1 (1997) fasc. 3453R e successive varianti "Prove d'incendio su cavi elettrici. Parte 1: Generalità e scopo".

C.E.I. 20-22/2 (1999) fasc. 4991R e successive varianti "Prove d'incendio su cavi elettrici. Parte 2: Prova di non propagazione dell'incendio".

C.E.I. EN 60898 (23-3 – 1999) fasc. 5076C e successive varianti "Interruttori automatici per la protezione dalle sovracorrenti per impianti domestici e similari"

C.E.I. 34-21 (1987) fasc. 1034 "Apparecchi di illuminazione – Parte I"

C.E.I. 34-30 (1986) fasc. 773 "Apparecchi di illuminazione – Parte II – Proiettori di illuminazione"

C.E.I. 34-33 (1986) fasc. 803 "Apparecchi di illuminazione – Parte II: Apparecchi per illuminazione stradale"

C.E.I. 64-7 (1986) fasc. 800 "Impianti elettrici di illuminazione pubblica e similari"

C.E.I. 64-8/1/2/3/4/5/7 (1998) fasc. 4131-4132-4133-4134-4135-4136-4137 e successive varianti "Impianti elettrici utilizzatori a tensione nominale non superiore a 1000V in corrente alternata e 1500V in corrente continua"

TABELLE C.E.I.-UNEL

35023 "Cavi per energia isolati con gomma o con materiale termoplastico aventi grado di isolamento non superiori a 4 - Cadute di tensione"

35024/1 fasc. 3516 e successive varianti "Cavi elettrici isolati con materiale elastomerico o termoplastico per tensioni nominali non superiori a 1000V in corrente alternata e a 1500V in corrente continua. Portate di corrente in regime permanente per posa in aria"

NORME UNI – UNI EN

UNI 10439 – Requisiti illuminotecnici delle strade con traffico motorizzato.

UNI EN 40 - Pali per illuminazione;

UNI 10819 – Specifiche limitazioni della dispersione verso l'alto.

BIBLIOGRAFIE DI RIFERIMENTO

guida per l'esecuzione degli impianti di illuminazione pubblica (edizione 1991)

raccomandazioni emanate dall'A.I.D.I. per la costruzione degli impianti stradale di pubblica illuminazione

2 Descrizione dell'intervento

2a Descrizione generale

L'opera consiste nella realizzazione di opere di urbanizzazione in cessione, asservimento e private a servizio di insediamenti commerciali e di somministrazione nella zona produttiva di nuovo impianto adiacente a via Villafalletto, localizzazione L2, in prossimità della tangenziale di Fossano

Opere in cessione ed a scomputo oneri di urbanizzazione primaria:

completamento rotatoria fra via Circonvallazione e via Villafalletto;

costruzione pista ciclopedonale su via Villafalletto;

sistemazione intersezione fra via Villafalletto e via Sasso;

sistemazione intersezione fra via Villafalletto e via Santa Chiara;

sistemazione area esterna cappella di Santa Chiara;

adeguamento via Villafalletto a strada urbana categoria E con piste ciclopedonali;

adeguamento strada vicinale di Santa Chiara;

costruzione di due nuove rotatorie e bretella di collegamento fra parco commerciale, strada di Santa Chiara e via Villafalletto e relativa area verde interna;

integrazione ed adeguamento sottoservizi vari;

costruzione di parte di aree verdi pubbliche.

Opere in cessione ed a scomputo oneri di urbanizzazione secondaria:

completamento rotatoria fra via Circonvallazione e via Villafalletto;

costruzione sistema di piste ciclopedonali pubbliche.

Opere varie non a Scomputo

costruzione di aree verdi asservite all'uso pubblico;

costruzione di parcheggio asservito all'pubblico;

realizzazione dei parcheggi privati e delle aree a verde privato (pertinenziale ed aiuole varie);

ricostruzione a spese del Proponente del muro posto a confine della proprietà Famiglia Quaglia, in precedenza demolito per rendere possibile l'ampliamento della Via Villafalletto. Verranno inoltre ammodernati tutti gli accessi privati siti lungo la Via Villafalletto tra la nuova rotatoria e lo svincolo con la tangenziale, contestualmente alla risistemazione della strada stessa.

Scelte progettuali 3

3.a Idrologia ed idraulica, situazione esistente

Piano stralcio per l'Assetto Idrogeologico (PAI)

Interventi sulla rete idrografica e sui versanti

Legge 18 Maggio 1989, n. 183, art. 17, comma 6ter

Adottato con deliberazione del Comitato Istituzionale n. 18 in data 26 aprile 2001

Norme di attuazione

Direttiva sulla piena di progetto da assumere per le progettazioni e le verifiche di compatibilita' idraulica

Allegato 1:Delimitazione dei sottobacini idrografici elementari

AUTORITA' DI BACINO DEL FIUME PO PARMA

Piano stralcio per l'Assetto Idrogeologico (PAI)

Interventi sulla rete idrografica e sui versanti

Legge 18 Maggio 1989, n. 183, art. 17, comma 6ter

Adottato con deliberazione del Comitato Istituzionale n. 18 in data 26 aprile 2001

7 Norme di attuazione

Direttiva sulla piena di progetto da assumere per le progettazioni e le verifiche di compatibilita' idraulica

Allegato 3 : Distribuzione spaziale delle precipitazioni intense

AUTORITA' DI BACINO DEL FIUME PO **PARMA**

Piano stralcio per l'Assetto Idrogeologico (PAI)

Interventi sulla rete idrografica e sui versanti

Legge 18 Maggio 1989, n. 183, art. 17, comma 6ter

Adottato con deliberazione del Comitato Istituzionale n. 18 in data 26 aprile 2001

7. Norme di attuazione

Direttiva sulla piena di progetto da assumere per le progettazioni e le verifiche di compatibilita' idraulica

Allegato 3 Distribuzione spaziale delle precipitazioni intense

Parametri delle linee segnalatrici di probabilità pluviometrica per tempi di ritorno di 20, 100, 200 e 500 anni

AT 121	AU 121	AV 121	AW 121	AX 121	AY 121	12	BA 121	BB 121	BC 121	BD 121	BE (EE	BG 121	BH 121	BI \	BJ 121	BK 121
AT	AU	AV	AW	AX	AY	AZ	EA	BB	BC	BD	BE	BF	BG	BH	BI	BJ	BK
122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	127	122	122
AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD	E	BF	BG	BH	BI	BU	EM
123	123	123	123	123	123	123	123	123	123	123	123	123	123	123	123	123	123
AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	124	BE	BF	BG	BH	BI	BJ	BK
124	124	124	124	124	124	124	124	124	124		124	124	124	124	124	124	124
AT 125	AU 125	AV 125	AW 125	AX 125	AY 125	AZ 125	BA 125	BB 125	BC 125	BD 125	BE 125	BF 125	BG 125	BH 125	B ₅	125	125
AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD	BE	BF	80	BH	BI	BJ	BK
126	126	125	126	126	126	126	126	126	126	126	126	126	126	125	126	125	126
AT	AU	AV	AW	AX	AY	AZ	BA	BB	5C	BD	BE	#F	BG	BH	BI	EU	BK
127	127	127	127	127	127	127	127	127	127	137	127	127	127	127	127	127	127
AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	80	BE	BF	BG	BH	BI	BJ	BK
128	128	128	128	128	128	128	128	128	128		128	128	128	128	128	128	128
AT	AU	AV	AW	AX	AY	AZ	IA	BB	BC	BD	BE	BF	BG	BH	BI	BJ	BK
129	129	129	129	129	129	129	129	129	129	129	129	129	129	129	129	129	129
AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD	BE	BF (BG	BH	BI	BJ	BK
170	130	130	130	130	130	130	130	130	130	130	130		/30	130	130	130	130
AT	AW	AV	AW	AX	AY	AZ	BA	BB	BC	BD	BE	BF	₽G	BH	BI	BJ	BK
131	1,81	131	131	131	131	131	131	131	131	131	131	131	181	124	131	131	131
AT	AU	AV	AW	AX	132	AZ	BA	BB	BC	BD	BE	BF	B/S	BH	BI	BJ	BK
132	132	132	132	132		132	132	182	132	132	132	132	132	132	122	182	132
AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC	BD	BVE	BF	BG	BH	BI	BJ	BK
133	133	133	133	133	533	133	133	123	133	133	138	133	133	133	133	133	133
AT 134	AU 134	AV 134	AW 134	134 /	AY 134	AZ 134	BA /	BB 134	BC 134	D 34	BB 13	BF 134	BG 134	BH 134	BI 134	BJ 134	BK (34
AT	AU	AV	AW	AX	AY	A2	BA	BB	BC	BD	BE	BF	BG	BH	BI	BJ	B)X
135	135	135	135	185	135	135	135	185	135	135	135	135	135	135	135	135	1/35
							/				5						1/

,549	AW128	397000,00000	4945000,000000	41,59	0,276	54,48	0,262	59,98	0,258	67,21	0,253
,546	AW129	397000,00000	4943000,00000	41,34	0,278	54,11	0,264	59,56	0,260	66,73	0,255
,543 ,539 ,536	AW130	397000,000000	4941000,00000	41,17	0,280	53,84	0,266	59,24	0,262	66,34	0,258
,539	AW131	397000,00000	4939000,000000	41,08	0,281	53,67	0,268	59,04	0,264	66,10	0,260
,536	AW132	397000,000000	4937000,00000	41,04	0,281	53,60	0,268	58,94	0,264	65,98	0,260
,532	AW133	397000,00000	4935000,00000	41,38	0,281	53,98	0,268	59,34	0,264	66,40	0,260
,527 ,522	AW134	397000,00000	4933000,00000	41,61	0,280	54,26	0,267	59,64	0,263	66,73	0,259
,522	AW135	397000,00000	4931000,00000	41,90	0,278	54,62	0,265	60,02	0,262	67,14	0,257
,515	AW136	397000,00000	4929000,00000	42,22	0,277	54,99	0,264	60,42	0,260	67,57	0,256
,504	AW137	397000,00000	4927000,00000	42,59	0,276	55,47	0,262	60,94	0,258	68,15	0,254
,496	AW138	397000,00000	4925000,00000	42,59	0,277	55,42	0,263	60,86	0,259	68,04	0,255
.484	AW139	397000,000000	4923000,00000	43,03	0,278	55,98	0,264	61,48	0,259	68,73	0,255
471	A18/14/0	207000 00000	4021000 00000	42 10	0.202	58 18	0.270	81 88	0.285	80 02	0.281

Coordinate della località oggetto d'indagine: E 397100; N 4933280.

La curva di possibilità climatica si definisce con la formula monomia:

h=a t n.

h=41.61 t ^{0,280}.

dove

h = altezza precipitazione

t = durata

a, n = parametri caratteristici della curva

Non essendo opere di rilevanza strategica si utilizza il tempo di ritorno di 20 anni.

Tale formula vale per precipitazioni di durata superiore ad un'ora, utilizzabili ad esempio per il dimensionamento dei pozzi perdenti con sufficiente laminazione.

In tal caso la portata affluente è di 41.61 mm/h

Per il dimensionamento della rete, **elementi secondari**, valgono le seguenti considerazioni: si tratta di piccolo invaso; il tempo di corrivazione è dell'ordine del minuto quindi la durata di pioggia da considerare per il dimensionamento di punta è di 5 minuti.

durata 5 min

h= 21 mm/5min

equivalenti a 249 mm/h

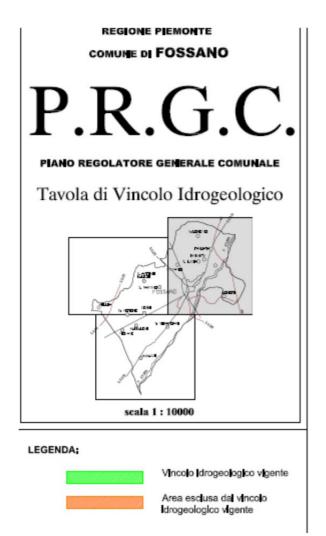
Q (mc/s) = $(3,6/10000)x \varphi x \psi x i' x A'$	0.032	
φ coefficiente di afflusso	0.85	
ψ = coefficiente di ritardo	0.83	
i' intensità di pioggia in mm/h	249	
A' superficie scolante in Ha < 30Ha	0.5	Aree di piccola entità, piazzali coperture

Per il dimensionamento della rete, **elementi principali**, valgono le seguenti considerazioni: si tratta di piccolo invaso; il tempo di corrivazione è dell'ordine di pochi minuti quindi la durata di pioggia da considerare per il dimensionamento di punta è di 15 minuti.

durata 15 min

h= 28 mm/15min

equivalenti a 113 mm/h


Q (mc/s) = (3,6/10000)x φ x ψ x i' x A'	0.126	
φ coefficiente di afflusso	0.85	
ψ = coefficiente di ritardo	0.83	
i' intensità di pioggia in mm/h	113	
A' superficie scolante in Ha < 30Ha	4.4	Dorsale principale area commerciale


Q (mc/s) = (3,6/10000)x φ x ψ x i' x A'	0.060	
φ coefficiente di afflusso	0.85	
ψ = coefficiente di ritardo	0.83	
i' intensità di pioggia in mm/h	113	
A' superficie scolante in Ha < 30Ha	2.1	Area cortiliva e superficie coperta


L'attuale smaltimento delle acque bianche delle zone oggetto d'intervento risulta così articolato:


Strada provinciale Fossano – Villafalletto, Strada di Santa Chiara e area oggetto d'intervento: le acque bianche parte si disperdono nel terreno attraverso i fossi di guardia drenanti, parte si disperdono nel reticolo idrografico minore. Una buona parte confluisce nel canale irriguo denominato "vasca di S.Martino", il quale poche centinaia di metri a valle, nei pressi della cappella di S. Chiara si unisce al canale costruito in seguito all'ampliamento della strada provinciale via Villafaletto. L'apporto idrico che ne risulta è stato stimato essere di 1.53 m^3/s.

Il presente paragrafo riporta sinteticamente la verifica la compatibilità idraulica del tratto di canale compreso tra la confluenza posta a valle della cappella di S.Chiara e il nodo posto immediatamente a valle del punto V. Il canale è stato oggetto di verifica idraulica da parte dell'ing. Boasso (18.12.2007). Ogni tratto è stato verificato idraulicamente ipotizzando delle condizioni di moto uniforme su tutto il tracciato, la formula utilizzata è quella di Chezy .

Di seguito vengono presentate le caratteristiche geometriche di ogni tratto,

dove:

r è il raggio per la sezione circolare,

b1, b2, h ed m rappresentano rispettivamente la base minore, la base maggiore, l'altezza e la scarpa della sezione trapezia,

Lè la lunghezza di ciascun tratto

I è la pendenza del fondo, ricavata dividendo la differenza di quota di ciascun tratto per la sua lunghezza;

c rappresenta il coefficiente di scabrezza di Strickler ed è un parametro idraulico.

tratto	tipologia	caratte	ristiche geo	metriche					Scabrezza C
		r [m]	b1 [m]	b2 [m]	h [m]	m	l [m]	i [m/m]	m^1/3/s^-]
A-B	circolare	0,30	-	-	-		39,23	0,005	75
B-C	trapezia	-	1,30	1,80	1,13	3	18,67	0,005	35
C-D	circolare	0,30	-	-	-		159,47	0,003	75
D-E	circolare	0,30	-	-	-		141,56	0,002	75
E-F	trapezia		0,80	1,80	0,61	1	39,46	0,012	30
F-G	circolare	0,30	-	-	-		4,21	0,002	75
G-H	trapezia		0,45	1,80	0,97	1	27,31	0,006	30
H-I	circolare	0,30	-	-	-		11,23	0,001	75
I-L	trapezia		0,50	2,00	0,85	1	30,38	0,002	30
L-M	circolare	0,30	-	-	-		6,89	0,002	75
M-N	trapezia		0,90	1,80	1,28	1	39,94	0,009	20
N-O	circolare	0,40	-	-	-		11,40	0,009	75

O-P	trapezia		0,60	1,80	0,40	0,3	147,75	0,005	30
P-U	circolare	0,40	-	-	-		390,74	0,008	75
U-V	trapezia		1,00	1,40	0,82	3	53,46	0,006	35
V-W	circolare	0,30					9,22	0,002	75

Tabella 1: caratteristiche geometriche dei tratti in esame

Nella tabella 2 sono riportati invece i risultati della verifica idraulica per ciascun tratto;

Qin rappresenta la portata entrante in ciascuna sezione,

Qmax è la massima portata che la sezione può convogliare, nel caso della sezione trapezia è la portata corrispondente ad un franco di sicurezza pari a 0.

La percentuale (%) di riempimento rappresenta il rapporto fra l'area bagnata e l'area totale disponibile e si riferisce alla portata massima che la sezione può sopportare; nel caso della sezione circolare la portata massima non corrisponde mai al massimo riempimento.

Q75 rappresenta la portata che per sezione circolare produce il 75% del riempimento della sezione stessa, è una portata che non si dovrebbe superare per operare con un certo margine di sicurezza,

Qf è la portata che per sezione trapezia consente di mantenere un certo franco di sicurezza, cioè una distanza tra il pelo libero e il piano campagna, questo franco è stato assunto di 20 cm per tutte le sezioni tranne che per il tratto O-P dove è di 10 cm.

tratto	Qin [m^3/s]	l [m/m]	Qmax [m^3/s]	% di riempim.	Q75 Qf (per sezione trapezia) [m^3/s]	Verifica	commento
A-B	1,53	0,005	0,455	97	0,354	Qin>Qmax	sezione insufficiente
B-C	1,53	0,005	2,91	100	2,17	Qin <qmax< td=""><td>verificata</td></qmax<>	verificata
C-D	1,53	0,003	0,353	97	0,275	Qin>Qmax	sezione insufficiente
D-E	1,53	0,002	0,288	97	0,224	Qin>Qmax	sezione insufficiente
E-F	1,53	0,012	1,37	100	0,66	Qin>Qmax	sezione insufficiente
F-G	1,53	0,002	0,288	97	0,224	Qin>Qmax	sezione insufficiente
G-H	1,53	0,006	1,82	100	1,11	Qin <qmax< td=""><td>franco insufficiente (0,08 m)</td></qmax<>	franco insufficiente (0,08 m)
H-I	1,53	0,001	0,204	97	0,158	Qin>Qmax	sezione insufficiente
I-L	1,53	0,002	0,82	100	0,47	Qin>Qmax	sezione insufficiente
L-M	1,53	0,002	0,288	97	0,224	Qin>Qmax	sezione insufficiente
M-N	1,53	0,009	3,6	100	2,55	Qin <qmax< td=""><td>verificata</td></qmax<>	verificata
N-O	1,53	0,009	1,316	97	1,02	Qin>Qmax	sezione insufficiente
O-P	1,53	0,005	0,8	100	0,41	Qin>Qmax	sezione insufficiente
P-U	1,53	0,008	1,24	97	0,965	Qin>Qmax	sezione insufficiente
U-V	1,53	0,006	1,43	100	0,93	Qin>Qmax	sezione insufficiente
V-W	1,53	0,002	0,28	97	0,224	Qin>Qmax	sezione insufficiente

Tabella 2: risultati verifica idraulica

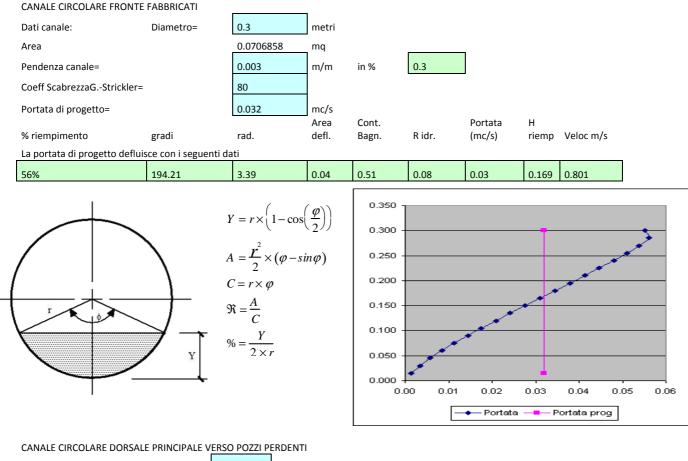
Il canale considerato risulta verificato solamente per due tratti, B-C ed M-N, laddove la sezione trapezia risulta adeguata per smaltire la portata convogliata. In tutti gli altri tratti la verifica ha dato esito negativo, sia dove il canale corre a cielo aperto sia dove è presente una copertura. Nel primo caso le cause sono da imputare sia all'insufficienza delle sezioni sia in alcuni casi al cattivo stato di conservazione del canale (eccessivo interrimento, erba non tagliata), mentre per quanto riguarda i tratti coperti le tubazioni sono tutte di dimensioni insufficienti.

Ne risulta che le acque del lotto in progetto dei lotti non possono, stante la situazione attuale, essere smaltite nel canale di San Martino.

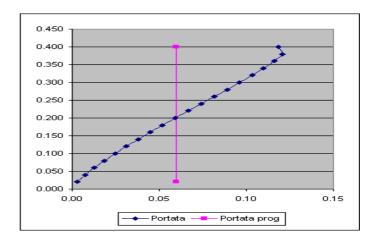
La scelta progettuale deve quindi prendere in considerazione la necessità di realizzare un sistema di pozzi perdenti.

3.b Idrologia ed idraulica situazione in progetto

La viabilità pubblica (via Villafalletto, strada di Santa Chiara, nuova bretella), poiché incrementa di poco la superficie impermeabilizzata ed a fronte della riduzione dell'apporto dell'area privata ed asservita del PEC, immessa in pozzi perdenti, continua a scaricare nel reticolo superficiale.


Si prevedono: pulizia dei fossi esistenti, parziale convogliamento in tubazioni di calcestruzzo, polietilene strutturato o PVC, deviazione del canale di San Martino con risagomatura.

L'area privata ed asservita è dotata di due reti distinte: la prima raccoglie unicamente le acque dei tetti e camminamenti, è convogliata in una cisterna di 20mc per riuso per irrigazione, il surplus mandato in rete di pozzi perdenti e l'eventuale ulteriore esubero, a sfioro nella reticolo superficiale


La seconda raccoglie le aree con presenza di veicoli: l'acqua è preventivamente trattata con impianti di depurazione di prima pioggia, successivamente immessa in pozzi perdenti ed il surplus inviato nel reticolo superficiale.

I pozzi perdenti in tutti i casi sono dimensionati per reggere la piovosità con tempo di ritorno 20 anni.

Dimensionamento reti

% riempimento	gradi	rad.	Area defl.	Cont. Bagn.	R idr.	Portata (mc/s)	H riemp	Veloc m/s
La portata di progetto defl	uisce con i seguei	nti dati						
50%	181.11	3.16	0.06	0.63	0.10	0.06	0.202	0.946

Dimensionamento pozzi perdenti

Parametri:

Superficie raccolta acqua (AE) 10000 m2

Tipo di Superficie (Ψm) - in Asfalto e Calcestruzzo senza fughe (Val. 0,90)

Superficie Impermeabile calcolata (Au) 9000 m2

Tipo di terreno drenante (kf) - Sabbia fine - (Val. 1,0E-05)

Numero punti pozzo nel terreno 32

Profondita tubo d'entrata (hRohr) 0.5 m

Diametro interno dell'anello perdente (di) o - cm 100 cm

Numero fori drenaggio 12

Diametro fori drenaggio o 10 cm

Spessore ghiaione esterno al perdente (hFilter) 1 m

Spessore ghiaione sottostante il perdente (hSand) 0.5 m

Fattore di sicurezza (fZ) 1,15

Dati precipitazioni massime:

Durata delle precipitazioni (D) 15 min.

Litri/Secondo/Ettaro: Precipitazioni massime (rD(n)) 42

Altezza utile Pozzo perdente (z) 49.24 m

Altezza singolo pozzo 1.5m

Dimensionamento impianto prima pioggia

Si utilizza il parametro di separare i primi 5mm di pioggia. L'acqua separata è sottoposta a dissabbiatura e disoleazione con filtro a coalescenza per scarichi finali in acque bianche.

3.c Acquedotto

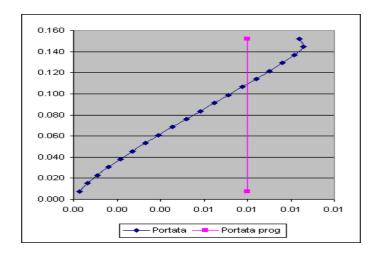
Rispetto a quanto previsto precedentemente il progetto di sistemazione della rete pubblica di acquedotto non subisce modifiche.

Si riporta in dettaglio il fabbisogno previsto del nuovo insediamento.

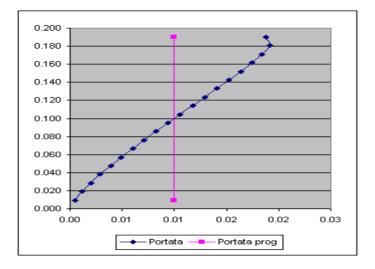
Numero di servizi igier	nici	6		Numero Cucine ed altre utenze	1	ed altre	utenze
Elementi	Portate	Num.	Portate Tot	Elementi	Portate	Num.	Portate Tot
	I/s		I/s		I/s		I/s
Vaso con cassetta	0.10	6	0.60	Lavabo	0.15	0	0.00
Lavabo	0.12	10	1.20	Lavastoviglie	0.25	2	0.50
Vasca	0.35	0	0.00	Lavatrice	0.15	1	0.15
Doccia	0.25	2	0.50	idropulitrice/varie	0.2	1	0.20
Bidet	0.12	0	0.00				
Totale		18	2.3	Totale		4	0.85
Numero di unità		1	Fattore di co	ontemporaneità			
Totale elementi per ur	nità	22	F	0.22	0.22		
Totale elementi		22	Fmin	0.20			
					0.69	I/s	
Portata Totale	3.15	I/s	Portata Effe	ttiva di punta	59390	I/gg	
				•	594	m3/gg	
Dimensionamento tub	o allaccian	nento					
	Portata d	i proget	to	0.69	l/s		
	Velocità d	di proget	tto	1	m/s		
	Area			0.000687386	m2		
	Diametro	minimo)	29.59140765	mm		
	Tubo			Pead 75 Pn 16			
	Diametro	adottat	0	61.4	mm		
	Area tubo)		0.002959419	m2		
	Velocità e	effettiva		0.232270742	m/s		
Calcolo della pressione	e di conseg	na					
	Epsilon/D				0.0033		
	Reynolds				0.0033	x10^6	
	lamba				0.014	Y100	
					0.036		
	j Lunghezz	2			200	m	
	Carico to		· a		30	m	
		tale pres	oa .		0.322		
	jL Carico to	talo con	rogna		29.678	m m	
			-		-5.00		
	Outota da	ı punto (ui consegna		-5.00 34.68	m m	
	Quota de	di co-c	oana				
	Pressione		egna				
	Pressione Numero p	oiani	_		1	m	
	Pressione Numero p Pressione	oiani e minima	_		1 8	m m	
ore di utilizzo	Pressione Numero p	oiani e minima	1	naliera media	1	m	

Metodo del Rubinett	to attività ex	tra alime	entare				
Numero di servizi igi	enici	3		Numero Cucine ed altre utenze	1	ed altre	e utenze
Elementi	Portate	Num.	Portate Tot	Elementi	Portate	Num.	Portate Tot
	I/s		I/s		l/s		I/s
Vaso con cassetta	0.10	3	0.60	Lavabo	0.15	0	0.00
Lavabo	0.12	5	1.20	Lavastoviglie	0.25	0	0.50
Vasca	0.35	0	0.00	Lavatrice	0.15	0	0.15

Doccia	0.25	1	0.50	idropulitrice/varie	0.2	0	0.20
Bidet	0.12	0	0.00				
Totale		9	2.3	Totale		0	0.00
Numero di unità		1	Fattore d	i contemporaneità			
Totale elementi per ur	nità	9	F	0.22	0.22		
Totale elementi		9	Fmin	0.20			
					0.41	I/s	
Portata Totale	1.15	I/s	Portata E	ffettiva di punta	35129	l/gg	
					351	m3/gg	
Dimensionamento tub	o allaccian	nento					
	Portata d	i proget	to	0.41	l/s		
	Velocità d			1	m/s		
	Area	. 0		0.000406	m2		
	Diametro	minimo)	22.76	mm		
	Tubo			Pead 50 Pn 16			
	Diametro	adotta	to	40.8	mm		
	Area tubo)		0.0013	m2		
	Velocità e	effettiva		0.311	m/s		
Calcolo della pressione	e di conseg	na					
	Epsilon/D)			0.0049		
	Reynolds				0.013	x10^6	
	lamba				0.036		
	j				0.00044		
	Lunghezz	а			200	m	
	Carico to		sa		30	m	
	jL	•			0.871	m	
	Carico to	tale con	segna		29.678	m	
			di consegna	а	-5.00	m	
	Pressione	-	_		34.13	m	
	Numero	piani			1	m	
	Pressione	minima	a		8	m	
	Differenz	a			26	m	
ore di utilizzo	12		portata g	iornaliera media	5.85		
giorni medi di utilizzo	300		portata a		1171		


Complessivamente lo stacco principale dalla rete pubblica ai contatori deve essere Ø140 polietilene PN16. I consumi previsti sono di circa 2.73 l/s in ora di punta per 9.006 mc annui a cui aggiungere circa 1.000 mc per l'irrigazione

3.d fognatura nera


E' prevista l'estensione di rete sulla viabilità pubblica. La presente variante non comporta modifiche a tali opera:

Scarico all'ora di punta 2.73 l/s

CANALE CIRCOLARE FRONTE	FABBRICATI	PRINCIPALI						
Dati canale:	Diametro=	0.152	metri					
Area		0.0181458	mq					
Pendenza canale=		0.004	m/m	in %	0.4			
Coeff ScabrezzaGStrickler=		80						
Portata di progetto=		0.008	mc/s					
			Area	Cont.		Portata	Н	Veloc
% riempimento	gradi	rad.	defl.	Bagn.	R idr.	(mc/s)	riemp	m/s
La portata di progetto defluis	sce con i segu	enti dati						
77%	244.87	4.27	0.01	0.32	0.04	0.01	0.117	0.620

CANALE CIRCOLARE Dati canale: Area Pendenza canale= Coeff ScabrezzaGStrickler= Portata di progetto=	Diametro=	0.19 0.0283528 0.004 80 0.01	metri mq m/m mc/s	in %	0.4			
% riempimento La portata di progetto deflui	gradi sce con i segui	rad. enti dati	Area defl.	Cont. Bagn.	R idr.	Portata (mc/s)	H riemp	Veloc m/s
77%	244.87	4.27	0.02	0.41	0.05	0.02	0.146	0.720

3e irrigazione

Parte dell'irrigazione è ad ala gocciolante, parte ad irrigatori statici a scomparsa.

La gestione dell'irrigazione delle aree pubbliche interne, (ovvero escludendo le rotatorie e l'area della Chiesa di Santa Chiara e completamente a carico del privato..

Sono alimentate da più riserve idriche di 10- 20mc a sua volta alimentate da acque piovane di recupero e da acquedotto come reintegro.

L'irrigazione e parte ad ala gocciolante parte con irrigatori statici a scomparsa

Dimensionamento irrigatori:

Per gittate fino a 3,9 m

Irrigatore statico a scomparsa "IGT 570 Plus", ugello ad angolo di lavoro fisso, dispositivo MPR per mantenere costante il rapporto fra acqua emessa e superficie coperta, molla di richiamo e vite di regolazione in acciaio inox, filtro interno a cestello estraibile dalla parte superiore, escursione della torretta mm 50, attacco filettato F 1/2".

IGT 570 Plus

Pressione	Gittata	Portata	litri/min					Prezzo
bar	m	90°	120°	180°	240°	270°	360°	Euro/cad.
Ugello a set	tore circolare	- Rosso						
1,5	1,2	0,2	0,3	0,4	0,6	0,8	0,9	7,23
2 - 3	1,5	0,3	0,5	0,7	0,9	0,9	1,3	7,23
3 - 5	1,5	0,4	0,5	0,8	1,0	1,1	1,5	7,23
Ugello a set	tore circolare	- Verde						
1,5	2,1	0,6	0,9	1,5	2,2	2,5	2,9	7,23
2 - 3	2,4	0,8	1,1	1,7	2,2	2,4	3,2	7,23
3 - 5	2,4	0,9	1,3	1,9	2,6	2.6	3,8	7,23
Ugello a set	tore circolare	- Blu						
1,5	2,1	0,6	0,9	1,5	2,2	2,5	2,9	7,23
2 - 3	2,4	0,8	1,1	1,7	2,2	2,4	3,2	7,23
3 - 5	2,4	0,9	1,3	1,9	2,6	2,6	3,8	7,23
Ugello a set	tore circolare	- Marrone						
1,5	3,4	1,5	2,2	3,6	4,2	3,9	6,3	7,23
2 - 3	3,9	1,8	2,4	3,6	4,8	5,5	7,3	7,23
3 - 5	3,9	2,0	2,6	3,9	5,3	6,1	7,9	7,23

Per gittate fino a 5 m

Irrigatore statico a scomparsa "IGT 570 pop-up", ugello ad angolo di lavoro regolabile da 10° a 360°, molla di richiamo e vite di regolazione in acciaio inox, filtro interno a cestello estraibile dalla parte superiore, escursione della torretta mm 50, attacco filettato F 1/2".

Modello IGT 570

Pressione	Ugello 45°		Ugello 90°		Ugello 180° Ugello 360°		Prezzo		
bar	gittata m	portata litri/min	gittata m	portata litri/min	gittata m	portata litri/min	gittata m	portata litri/min	Euro/cad.
1,5	4,3	2,5	4,3	4,3	4,3	8,8	3,8	11,8	5,68
2,0	4,5	3,0	4,5	5,0	4,5	10,0	4,1	13,5	5,68
2,5	4,8	3,4	4,8	5,6	4,8	11,1	4,3	15,0	5,68
3,0	5,0	3,8	5,0	6,2	5,0	12,0	4,5	16,3	5,68
3,5	5,0	4,1	5,0	6,7	5,0	12,9	4,8	17,5	5,68

Per gittate fino a 5,5 m

Irrigatore statico a scomparsa "IGL 303 pop-up", ugello ad angolo di lavoro regolabile da 10° a 360°, frizione per la regolazione della direzione del getto dopo l'installazione, filtro interno a cestello estraibile dalla parte superiore, regolazione della traiettoria con vite in acciaio, escursione della torretta mm 50, attacco filettato F 1/2".

Modello IGL 303

Drassiana	Ugello 45°		Ugello 90°		Ugello 180			Ugello 360°	
Pressione bar	gittata m	portata litri/min	gittata m	portata litri/min	gittata m	portata litri/min	gittata m	portata litri/min	Prezzo Euro/cad.
1,5	4,6	1,3	4,6	2,4	4,6	4,8	4,6	9,7	4,13
2,0	4,8	1,4	4,8	2,8	4,8	5,7	4,8	11,3	4,13
2,5	5,0	1,6	5,0	3,2	5,0	6,3	5,0	12,5	4,13
3,0	5,3	1,9	5,3	3,8	5,3	7,6	5,3	15,2	4,13

POLIETILENE								
Ø est.	PE 100							
mm	16 mm							
20	-							
25	-							
32	26,0							
40	32,6							
50	40,8							
63	51,4							
3,5	5,5	2,2	2,2 5,5	2,2 5,5 4,3	2,2 5,5 4,3 5,5	2,2 5,5 4,3 5,5 8,6	2,2 5,5 4,3 5,5 8,6 5,5	2,2 5,5 4,3 5,5 8,6 5,5 17,2

perdite di carico distribuite e localizzate tubazione come indicato di seguito; portata richiesta 6.3l/min x18 irrigatori (zona maggiormente sfavorita) 113 l/min alla pressione di 2.5+0.35+0.15 = 3bar

$$\Delta = JL = \frac{10.675 \text{ Q}^{1.852}}{\text{C}^{1.852} \text{ D}^{4.8704}} \text{ L}$$

Dati di	Calcolo		D =	Diametro interno
D	0.051	m	Q =	Portata della condotta
D	0.001	***	??=	Dislivello Piezometrico
Q	0.00189	m³/s	C =	Coefficiente di scabrezza: 100 per tubi calcestruzzo
?	3.5475975	m		120 per tubi acciaio 130 per tubi ghisa rivestita
				140 per tubi rame, inox
С	150			150 per tubi PE, PVC e PRFV
L	200	m	L =	Lunghezza della condotta

3f metano

L'estensione di rete pubblica non subisce modifica rispetto a quanto previsto originariamente e già approvato. La tubazione è prevista in PEAD S5 De 150mm. Sono modificati i punti di consegna. I consumi globali sono sostanzialmente inalterati.

3g reti enel, telecom, IP

Si fa riferimento alla relazione specifica allegata separatamente.

3h pavimentazioni e rilevati

Definizione del pacchetto di pavimentazione: Per il TGM si utilizzano i dati della postazione n. 33 di rilevamento della Provincia di Cuneo posta sulla SP184. Tali valori sono utilizzati per tutte le strade pubbliche.

C) DETER	MINAZIONE A	NALITICA														
GM =											4 4	54				
Numero gi	iorni commerci	ali per settimar	na (gg	g) =								7				
		nerciali per ann			=						5	2				
Aliquota d	i traffico per dir	rezione più cari	ica (p	id) =							0.	55				
	le veicoli comr) =								0.	15				
Aliquota d	i veicoli comm	erciali sulla cor	sia d	i mar	cia no	rmal	e (pl)	=			0.	95				
		ne delle traietto					" /				0	.8				
		er veicolo comn					(na) =			2	.5				
		urante la vita ut					r	_			0.	02				
∕ita utile i							(n)	=			2	0				
							· · · /									
Spettro tra per strada	•	ione delle 16 c	atego	orie de	ei veid	oli co	onside	erati (dal Ca	atalog	jo Ital	iano	delle	pavim	ienta:	zior
	Tipo veicolo	Percentuale						_		assi	(ton)					
	commerciale	%		1	2	3	4	5	6	7	8	9	10	11	12	1.
	1	0.00%		1	1											$oxed{oxed}$
	2	13.10%			1	1										
	3	39.50%	di assi distribuiti per peso				1				1					
	4	10.50%	ă.					1						1		
	5	7.90%	per				1	<u> </u>			2					
	6	2.60%	≔						1				2			
	7	2.60%	ją				1				2	1				
	8	2.50%	istr						1				3			
	9	2.60%	- 				1				4					
	10	2.50%	888						1			2	2			
	11	2.60%	.				1				3		1			
	12	2.60%	Numero						1			3		1		Г
	13	0.50%	Ĕ					1							1	3
	14	0.00%	∄				1				1					Г
	15	0.00%							1				1			
	16	10.50%						1			1					
								-			-					
	Tipo veicolo	Percentuale					Fre	eque	nze p	arzi	ali de	gli a	ssi			
	commerciale	%		1	2	3	4	5	6	7	8	9	10	11	12	1
	1	0.00%														
	2	13.10%	00		13.1%	13.1%										
	3	39.50%	ре				39.5%				39.5%					
	4	10.50%	Эeс					10.5%						10.5%		
	5	7.90%	:				7.9%				15.8%					
	6	2.60%	Frequenza degli assi distribuiti per peso						2.6%				5.2%			
	7	2.60%	str				2.6%				5.2%	2.6%				
	8	2.50%	i <u>a</u>						2.5%				7.5%			
	9	2.60%	888				2.6%				10.4%					
	10	2.50%	i iii						2.5%			5.0%	5.0%			
	11	2.60%) jej				2.6%				7.8%		2.6%			Г
	12	2.60%	- B						2.6%			7.8%		2.6%		Г
	13	0.50%	en:					0.5%							0.5%	1.5
	14	0.00%	nb													\Box
	15	0.00%	Fre													\vdash
	16	10.50%						10.5%			10.5%					\vdash
	10	10.5076									10.0%					_
					13.1%	13.1%	55.2%	21.5%	10.2%		89.2%	15.4%	20.3%	13.1%	0.5%	1.5

1 2 3 4 5 6 7 8	0.0% 13.1% 13.1% 55.2% 21.5% 10.2% 0.0% 89.2%		0. 0. 0. 0.	.0002 .0039 .0197 .0625 .1525 .3164	1 8 0 9			0.00 0.05 0.26 3.45 3.28	5% 6% 5% 3%						
3 4 5 6 7	13.1% 13.1% 55.2% 21.5% 10.2% 0.0% 89.2%		0. 0. 0. 0.	.0039 .0197 .0625 .1525 .3164	1 8 0 9			0.05 0.26 3.45 3.28	5% 6% 5% 3%						
3 4 5 6 7	13.1% 55.2% 21.5% 10.2% 0.0% 89.2%		0. 0. 0. 0.	.0197 .0625 .1525 .3164	8 0 9			0.28 3.45 3.28	5% 5% 3%						
4 5 6 7 8	55.2% 21.5% 10.2% 0.0% 89.2%		0. 0. 0.	.0625 .1525 .3164	0 9			3.45 3.28	5% 3%						
5 6 7 8	21.5% 10.2% 0.0% 89.2%		0. 0.	.1525 .3164	9			3.28	3%						
6 7 8	10.2% 0.0% 89.2%		0.	.3164											
7 8	0.0% 89.2%		0.		1			2.22							
8	89.2%			5961			l	3.23	3%						
				JUUC I	8			0.00	3%		1				Т
9	4 = 404		- 1.	.0000	0			89.2	0%		1				Т
~	15.4%		1.	.6018	1			24.6	7%		1				Т
10	20.3%		2.	4414	1			49.5	6%						Т
11	13.1%		3.	.5744	6										\top
12	0.5%		5.	.0625	0			2.53	3%		1				Т
13	1.5%		6.	.9729	0										\top
TOTALE	253.1%		T	OTAL	E										
	: 100:::		: - 1:	-1 - 4 -		. :1 4	:	JI:	252	1 1		JI: JI:	or		<u>_</u>
						_					assi	ال ال	lierer	ite pe	SU,
corrispond	ono al passag	ggio a	II	233	3.5	assı	equiva	alenti	da 8	Ĭ.					+
mero transit	ti totali W ₁₈ =							5 767	516		Assi	da 8	t		
															\perp
CALCOL	O W ₁₈ :							5 767	516		Assi	da 8	t		
9	11 12 13 OTALE assaggio d corrispond	11 13.1% 12 0.5% 13 1.5% TOTALE 253.1%	11 13.1% 12 0.5% 13 1.5% OTALE 253.1% assaggio di 100 veicoli comme corrispondono al passaggio di nero transiti totali W ₁₈ =	11 13.1% 3 12 0.5% 5 13 1.5% 6 COTALE 253.1% T assaggio di 100 veicoli commerciali corrispondono al passaggio di nero transiti totali W ₁₈ =	11 13.1% 3.5744 12 0.5% 5.0625 13 1.5% 6.9729 TOTALE 253.1% TOTAL assaggio di 100 veicoli commerciali dete corrispondono al passaggio di 233 nero transiti totali W ₁₈ =	11 13.1% 3.57446 12 0.5% 5.06250 13 1.5% 6.97290 TOTALE assaggio di 100 veicoli commerciali determina corrispondono al passaggio di 233.5 nero transiti totali W ₁₈ =	11 13.1% 3.57446 12 0.5% 5.06250 13 1.5% 6.97290 TOTALE assaggio di 100 veicoli commerciali determina il tra corrispondono al passaggio di 233.5 assi nero transiti totali W ₁₈ =	11 13.1% 3.57446 12 0.5% 5.06250 13 1.5% 6.97290 TOTALE 253.1% TOTALE assaggio di 100 veicoli commerciali determina il transito corrispondono al passaggio di 233.5 assi equivanero transiti totali W ₁₈ =	11 13.1% 3.57446 46.8 12 0.5% 5.06250 2.53 13 1.5% 6.97290 10.4 TOTALE 233.5 assaggio di 100 veicoli commerciali determina il transito di corrispondono al passaggio di 233.5 assi equivalenti mero transiti totali W ₁₈ = 5 767	11 13.1% 3.57446 46.83% 12 0.5% 5.06250 2.53% 13 1.5% 6.97290 10.46% TOTALE 233.51% TOTALE 233.51% assaggio di 100 veicoli commerciali determina il transito di 253 corrispondono al passaggio di 233.5 assi equivalenti da 8 nero transiti totali W ₁₈ = 5 767 516	11 13.1% 3.57446 46.83% 12 0.5% 5.06250 2.53% 13 1.5% 6.97290 10.46% TOTALE 233.51% assaggio di 100 veicoli commerciali determina il transito di 253.1 corrispondono al passaggio di 233.5 assi equivalenti da 8 t. nero transiti totali W ₁₈ = 5 767 516	11 13.1% 3.57446 46.83% 12 0.5% 5.06250 2.53% 13 1.5% 6.97290 10.46% TOTALE 233.51% assaggio di 100 veicoli commerciali determina il transito di 253.1 assi corrispondono al passaggio di 233.5 assi equivalenti da 8 t. nero transiti totali W ₁₈ = 5 767 516 Assi	11 13.1% 3.57446 46.83% 12 0.5% 5.06250 2.53% 13 1.5% 6.97290 10.46% TOTALE 233.51% assaggio di 100 veicoli commerciali determina il transito di 253.1 assi di di corrispondono al passaggio di 233.5 assi equivalenti da 8 t. nero transiti totali W ₁₈ = 5 767 516 Assi da 8	11 13.1% 3.57446 46.83% 12 0.5% 5.06250 2.53% 13 1.5% 6.97290 10.46% TOTALE 233.51% assaggio di 100 veicoli commerciali determina il transito di 253.1 assi di differen corrispondono al passaggio di 233.5 assi equivalenti da 8 t. nero transiti totali W ₁₈ = 5 767 516 Assi da 8 t	11 13.1% 3.57446 46.83% 12 0.5% 5.06250 2.53% 13 1.5% 6.97290 10.46% TOTALE 233.51% assaggio di 100 veicoli commerciali determina il transito di 253.1 assi di differente pe corrispondono al passaggio di 233.5 assi equivalenti da 8 t. nero transiti totali W ₁₈ = 5 767 516 Assi da 8 t

[DETERM	NAZIONE	STRUCTU	RAL NUM	IBER (SN)	
STRATI	Spessore s _i (mm)	Coefficient e drenaggio	Coefficiente spessore (a _i)	s _i ·d _i ·a _i	CBR	M _R (psi)
Sottofondo					5.00	7006.46
Fondazione	400	1	0.12	48.00		
Base cementata	0	1	0.22	0.00		
Base bitumata	100	1	0.18	18.00		
Collegamento	60	1	0.40	24.00		
Usura	30	1	0.45	13.50		
				103.50		
SNSG =					0.608109508	
SN = SNSG+0,039	94Σsi∗di⊦ai =	=			4.686009508	
Log ₁₀ W ₁₈ =	6.894806					
Pari ad un transi	⊥ to ammissi	bile W ₁₈ :	7 848 856	assi da 8t		
a fronte di un tra	nsito comp	lessivo di	5 767 516	assi da 8t	VERIFICAT	ГО
	_					

Non sono previsti asfalti drenanti vista la presenza di traffico agricolo, che satura i fori drenanti.

Per lo strato di fondazione stradale sono ammessi oltre ai prodotti di cava i materiali riciclati che rispondano alle seguenti prescrizioni:

Lo strato di fondazione di sovrastrutture stradali viene in genere realizzato con misto granulare non

legato che può essere costituito da inerti granulari riciclati

Il misto granulare riciclato è una miscela selezionata di aggregati riciclati, eventualmente corretta mediante l'aggiunta o la sottrazione di determinate frazioni granulometriche per migliorarne le proprietà fisico-meccaniche.

REQUISITI DI COMPOSIZIONE

Il misto granulare per strati di fondazione costituito da aggregati riciclati dovrà possedere i requisiti

di composizione indicati nella seguente

Requisiti di composizione dei misti granulari riciclati per strati di fondazione

Componenti	Modalità di prova	Limiti
Contenuto di materiali litici di qualunque provenienza, pietrisco tolto d'opera, calcestruzzi, laterizi, refrattari, prodotti ceramici, malte idrauliche ed aeree, intonaci	UNI EN 13285 Appendice A	> 90% in massa
Contenuto di vetro e scorie vetrose	UNI EN 13285 Appendice A	< 5% in massa
Contenuto di conglomerati bituminosi	UNI EN 13285 Appendice A	< 5% in massa
Contenuto di altri rifiuti minerali dei quali sia ammesso il recupero in sottofondi e fondazioni stradali ai sensi della legislazione vigente	UNI EN 13285 Appendice A	≤5% in massa per ciascuna tipologia
Contenuto di materiali deperibili: carta, legno, fibre tessili, cellulosa, residui alimentari, sostanze organiche eccetto bitume; Materiali plastici cavi: corrugati, tubi o parti di bottiglie di materia plastica, ecc.	UNI EN 13285 Appendice A	≤ 0,1% in massa
Contenuto di altri materiali: metalli, guaine, gomme, lana di roccia o di vetro, gesso, ecc.	UNI EN 13285 Appendice A	≤ 0,4% in massa

REQUISITI FISICO-MECCANICI

Gli aggregati grossi (trattenuti al setaccio da 4 mm UNI EN) e gli aggregati fini (passanti al setaccio da 4 mm UNI EN) sono gli elementi che formano il misto granulare.

Per gli elementi dell'aggregato grosso devono essere soddisfatti i requisiti indicati nella Tabella successiva

Requisiti dell'aggregato grosso (frazione trattenuta al setaccio da 4 mm) dei misti granulari riciclati per strati di fondazione

Indicatori di qualit	Unità di	Livello di traffico				
Parametro Normativa		misura	PP	Р	М	L
Perdita per abrasione "Los Angeles"	UNI EN 1097-2	%	≤30	≤30	≤ 35	≤40
Dimensione max	UNI EN 933-1	mm	63	63	63	63
Indice di forma	UNI EN 933-4	%	≤35	≤35	≤ 35	≤35
Indice di appiattimento	UNI EN 933-3	%	≤35	≤35	≤ 35	≤35
Sensibilità al gelo (1) UNI EN 1367-1		%	≤20	≤20	≤ 30	≤30
(1) In zone soggette al gelo						

L'aggregato fino deve essere costituito da elementi che possiedano le caratteristiche riportate nella

seguente Tabella seguente

Requisiti dell'aggregato fine (frazione passante al setaccio da 4 mm) dei misti granulari riciclati per strati di fondazione

Indicatori di qualità		Unità di misura	Livello di traffico			
Parametro	Normativa	Onita di misura	PP	Р	М	٦
Equivalente in sabbia	CNR B.U. 27/72	%	≥ 30	≥ 30	≥30	≥ 30
Indice Plasficità	CNR-UNI 10014	%	N.P.	N.P.	N.P.	≤ 6
Limite Liquido	CNR-UNI 10014	%	≤ 25	≤ 25	≤35	≤ 35
Passante al setaccio 0,063 mm	UNI EN 933-1	%	≤ 6	≤ 6	≤6	≤ 6

La miscela di aggregati riciclati da adottarsi per la realizzazione del misto granulare deve avere una composizione granulometrica contenuta nel fuso riportato in Tabella 6.4.

Requisiti granulo metrici della miscela di aggregate riciclati

Vagli UNI EN	Apertura maglia (mm)	Passante (%)	
Setaccio	63,000	100	
Setaccio	31,500	75 – 100	
Setaccio	16,000	50 – 82	
Setaccio	10,000	35 – 70	
Setaccio	4,000	22 – 50	
Setaccio	2,000	15 – 40	
Setaccio	0,500	8 – 25	
Setaccio	0,125	5 – 15	
Setaccio	0,063	2 – 10	

La dimensione massima dell'aggregato non deve in ogni caso superare la metà dello spessore dello strato finito ed il rapporto tra il passante al setaccio UNI EN 0,063 mm ed il passante al setaccio UNI EN 0,5 mm deve essere inferiore a 2/3.

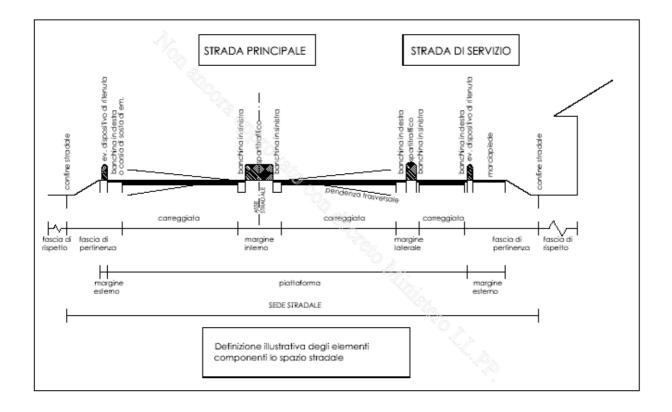
La produzione di materiale finissimo per effetto del costipamento con energia AASHO Modificata, effettuato nell'intervallo di umidità ±2% rispetto all'umidità ottima wott (determinata con la stessa prova di costipamento AASHO modificato) e valutata tramite la differenza della percentuale di passante al setaccio UNI EN 0,063 mm prima e dopo il costipamento, non dovrà essere superiore al 5%.

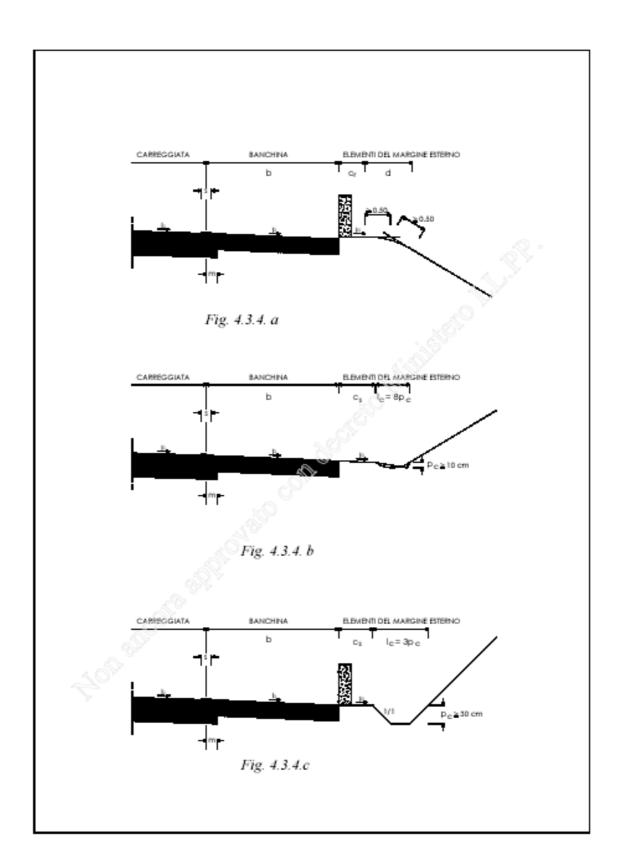
L'indice di portanza CBR (CNR-UNI 10009) dopo quattro giorni di imbibizione in acqua (determinato sul materiale passante al setaccio UNI EN 20 mm) non deve essere minore del valore assunto per il calcolo della pavimentazione in fase di Progetto della stessa ed in ogni caso non minore di 30. È inoltre richiesto che tale condizione sia verificata per un intervallo di ±2% rispetto all'umidità ottimale di costipamento.

REQUISITI CHIMICI

I materiali riciclati debbono appartenere prevalentemente alle tipologie 7.1., 7.2., 7.11. e 7.17. previste dal D.M. 05/02/98, n. 72. Non sono ammessi materiali contenenti amianto e/o sostanze pericolose e nocive o con significativi contenuti di gesso. Pertanto, tali materiali debbono essere sottoposti ai test di cessione sul rifiuto come riportato in Allegato 3 del citato D.M. del 05/02/98, o a test equivalente di riconosciuta valenza europea (UNI 10802/2002).

Il contenuto totale di solfati e solfuri (Norma UNI EN 1744-1) deve essere <1 %. Se il materiale viene posto in opera a contatto con strutture in c.a., tale valore deve essere <0,5 %.


3i calcestruzzi e copriferro


I calcestruzzi di cordoli e strutture in prossimità delle pavimentazioni, a causa dell'uso di sali disgelanti devono avere miscele a prestazione garantita XC4, XF3 Rck>35N/mmq, rapporto acqua cemento 0.5, dosaggio minimo 340 kg/mc di cls. Copriferro minimo reale 40mm.

3j Sezione stradale

La S.P.184 nel tratto oggetto d'intervento può essere classificata come strada urbana di quartiere categoria E, con presenza di autobus. La corsia risulta maggiorata pertanto a 3.50m.

Sono previste oltre al marciapiede da un lato, una pista ciclabile sul alto opposto.

ELEMENTO	DENOMINAZIONE	STRADA	DIMENSIONE	
s		A - B	0,25 m	
	striscia di delimitazione	C- D - E	0,15 m	
		F	0,12 m	
m	bordo carreggiata	tutte	≥ 0,30 m	
i _o	pendenza trasversale carreggiata in rettifilo in curva	tutte	2,5 % ≥ 2,5 %	
i_b	pendenza trasversale banchina	tutte	= ic	
C _r	ciglio o arginello in	A - B - C - D	* ≥ 0,75 m	
	rilevato	E - F	≥ 0,50 m	
d	raccordo	ove previsto	1,00 m	
C _s	ciglio in scavo	ove previsto	come c _r	
i _a	pendenza trasversale c _r e c _s	tutte	4 %	
l _e	larghezza cunetta	tutte	≥ 0,80 m	
p _e	profondità cunetta	tutte	vedi figure 4.3.4.b/c	
ь	banchina	vedi Tab. 3.4.a al Cap. 3		

^{*} dipende dallo spazio richiesto per il funzionamento del dispositivo di ritenuta

SP 184

La sede stradale, al netto delle scarpate e fossi di guardia risulta così articolata:

Elementi marginali come da tabella

- n. 2 banchine laterale da 0.50m, pavimentate
- n. 2 corsie da 3.50 m

pista ciclabile da 2.50m separata da doppio cordolo di larghezza 50cm dalla bancina.

Bretella di raccordo al parco commerciale

La sede stradale, al netto delle scarpate e fossi di guardia risulta così articolata:

Elementi marginali come da tabella

- n. 2 banchine laterale da 0.50m, pavimentate
- n. 2 corsie da 3.50 m

pista ciclabile da 2.50m separata da doppio cordolo di larghezza 50cm dalla banchina.

Ove serve corsia d'ingresso al parcheggio.

Rotatorie

Le nuove Rotatorie in progetto sono classificabili come urbane compatte dimensionate come da DM 19 aprile 2006

24-7-2006

GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA

Serie generale - n. 170

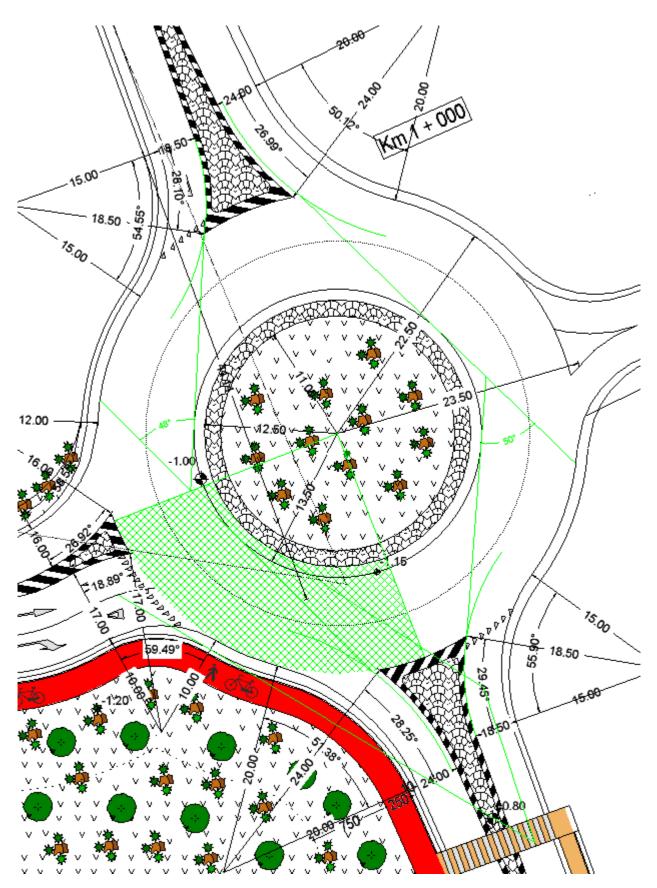
Elemento modulare	Diametro esterno della rotatoria (m)	Larghezza corsie (m)
Corsie nella coro na rotatoria (*), per ingressi	≥40	6,00 ,
ad una corsia	Compreso tra 25 e 40	7,00(^\c)
	Compreso tra 14 e 25	7,00 - 8,00
Corsie nella coro na rotatoria (*), per ingressi	≥40	9,00,
a più corsie	<40	8,50 +9,00
Bracci d i ingresso (**)		3,50 per una corsia 6,00 per due corsie
Bracci di uscita (*)	< 25	A 4,00
	≥ 25	4,50

^(*) deve essere organizzata sempre su una sola corsia.

Tabella 6

Ove indicato, ossia in prossimità dello svincolo con la tangenziale, strade sono protette con barriere stradali di sicurezza rispondenti al D.M. 223 del 18.02.1992 e s.m.i. ed alla direttiva Ministero delle Infrastrutture e dei Trasporti del 25 agosto 2004. strada urbana di quartiere traffico tipo III, barriere bordo laterale H1, classe attenuatori 50, classe terminali P1.

3k tracciato e profilo longitudinale


Il tracciato della SP 184 rimane inalterato, con modifica della sezione stradale allargandola verso il parco commerciale. Il tracciato della bretella segue i dettati del PRGC.

La SP 184 rimane inalterata come profilo longitudinale, altrettanto la strada vicinale di Santa Chiara.

Le rotatorie sono realizzate con pendenza verso l'esterno, per facilitare lo smaltimento delle acque piovane.

Si riporta di seguito la verifica della deflessione e della visuale libera secondo il DM 19 aprile 2006.

^(**) organizzati al massimo con due corsie.

31 viabilità non motorizzata

E. posta particolare attenzione alle percorrenze ciclopedonali, sia per l'accesso al parco commerciale, sia per un futuro sviluppo lungo la SP 184. Il percorso collega via circonvallazione con il parco commerciale, con attenzione alla cappella di Santa chiara, di recente restauro, e con il raggiungimento di tutti i fabbricati.

La parte terminale, fronte fabbricati è coperta con una tettoia.

I percorsi cicolpedonali sono bitumati con asfalti colorati nella massa. E protetti con cordoli dal traffico veicolare.

Gli attraversamenti delle corsie sono rialzati.

3m parcheggi e varie

L'organizzazione dei parcheggi è unitaria e con corsia perimetrale.

I parcheggi sono per lo più pavimentati con masselli drenanti. I corselli sono bitumati. Tutti i parcheggi sono illuminati e piantumati.

L'accesso all'area merci principale è dotato di corsia di svolta a destra, larghezza 3.50m dimensionata secondo il decreto sulle intersezioni stradali con 30m lunghezza di diversione e corsia di decelerazione da 50 km/h a 0

E' stato inserita una fermata bus sulla strada provinciale.

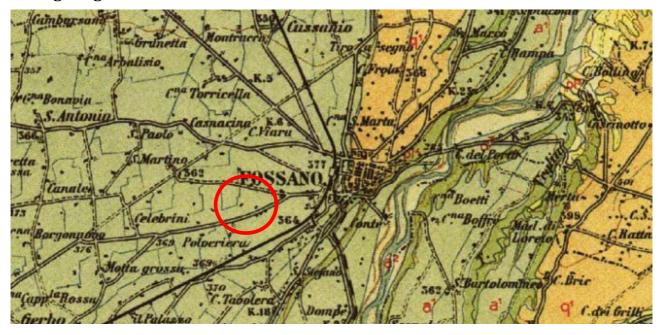
4 Fattibilità dell'intervento

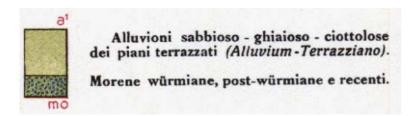
4.a Indagini geologiche e geotecniche

Descrizione dell'opera

L'opera consiste nella: demolizione della cascina parzialmente in rovina; realizzazione opere di urbanizzazione private pubbliche ed asservite; costruzione di nuovo parco commerciale.

Modellazione geologica


Descrizione generale del sito


La zona e' situata a circa 363 m s.l.m. La giacitura è sub pianeggiante, debolmente inclinata verso NE ad acclività modesta, contraddistinta da valori di pendenza medi comunque per lo più inferiori al 2 %. Le costruzioni vengono ad edificarsi in una zona con edifici di varie epoche e strutture portanti. Non sono presenti movimenti franosi. L'area non è soggetta a dissesti idrogeologici.

Geologia generale dell'area

In base ad una prima osservazione ricavata dalla Carta Geologica in scala 1:100.000 redatta dall'Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), risulta che il terreno oggetto d'intervento è costituito da alluvioni di tipo sabbioso, ghiaioso, ciottolose dei piani terrazzati. La falda acquifera superficiale si localizza a circa 4,00 m di profondità rispetto al piano campagna.

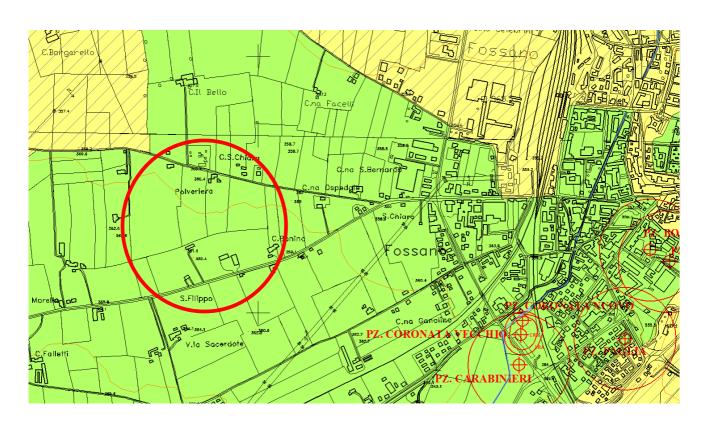
Carta geologica

Vista satellitare

Caratterizzazione geotecnica

Ubicazione e descrizione di sondaggi e prove in situ

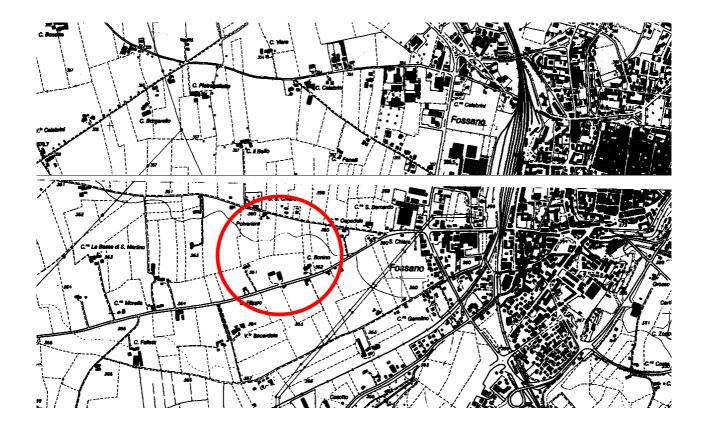
E' obbligo effettuare opportune indagini geotecniche e geognostiche volte alla corretta individuazione della stratigrafia del terreno relativo all'area in cui andrà ad edificarsi la nuova costruzione. Ciò dovrà essere svolto per la progettazione strutturale ed impiantistica del fabbricato.


Scelta dei parametri geotecnici

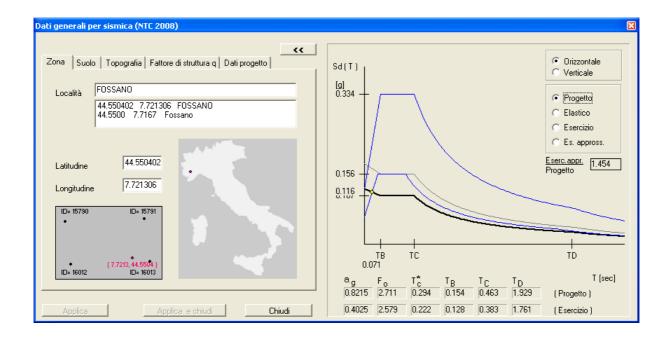
Descrizione del terreno

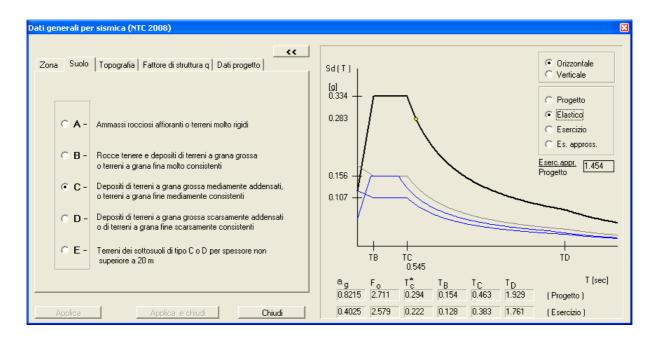
La stratigrafia è eterogenea e presenta tre strati di potenza variabile. Si riportano, nella tabella seguente, i dati medi della stratigrafia da definire con opportune indagini geotecniche:

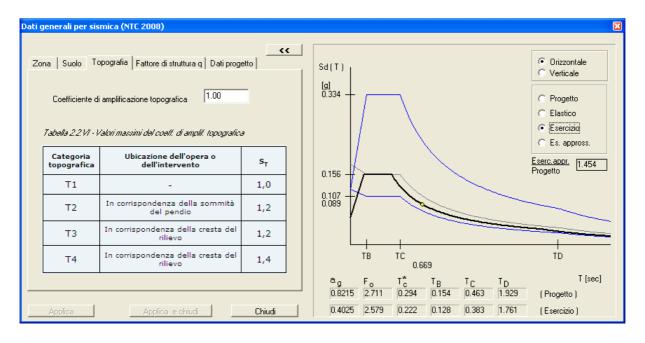
n.	nome	zi [cm]	zf [cm]	2d [daN/cm3]	2t [daN/cm3]	c' [daN/cm2]	?' [°]	G' [daN/cm2]
1	Argilla	0	-100	0.0016	0.00195	0	25	180
2	Sabbia	-100	-200	0.00185	0.00215	0	30	200
3	Ghiaia	-200	-5000	0.0019	0.00215	0	35	220

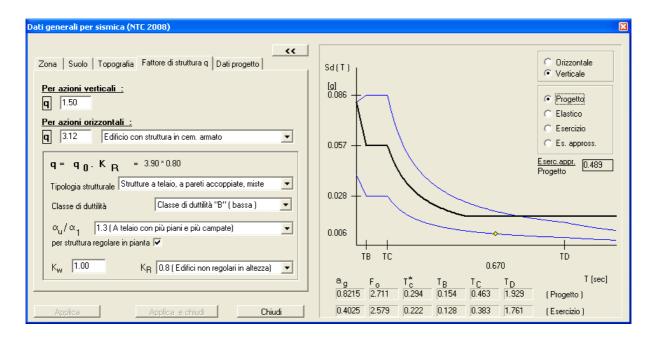

Carta di sintesi della pericolosita' geomorfologica

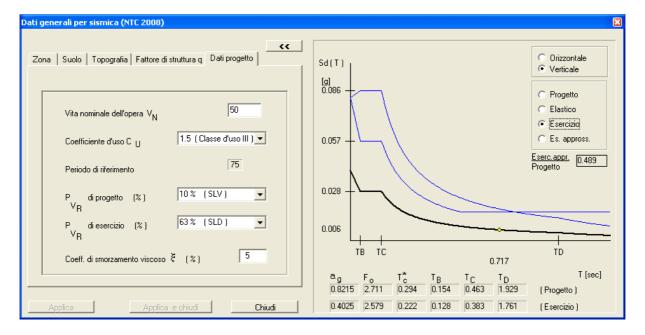
CLASSE I — Porzioni di territorio dove le condizioni di pericolosità geomorfologica sono tali da non porre limitazioni alle scelte urbanistiche: gli interventi sia pubblici che privati sono di norma consentiti nel rispetto delle prescrizioni del D.M. 11/03/88.


CTR Piemonte




Analisi sismica


La città di Fossano ricade in zona 3 di pericolosità sismica.


Si riportano i principali parametri di definizione dei sismi di progetto.

Conclusioni

Sulla base delle analisi suddette si può concludere che l'area di impianto della costruzione in oggetto è ritenuta idonea alla trasformazione proposta dal progetto.

4.b Accertamenti di natura ambientale e vincoli vari

Non si attraversano zone di particolare pregio ambientale. Non sono presenti notizie su presenza di reperti archeologici.

4.c Interferenze di altri servizi

Sono state eseguite indagini presso gli enti erogatori di pubblici servizi.

Non sono emersi problemi di rilievo.

Per l'esecuzione dei lavori di attraversamento e scavo a fianco della strada SS231 nella fascia di 30m,occorrerà ottenere il nulla osta dell'ente proprietario della Strada.

Deve essere ottenuto il nulla osta dall'amministrazione provinciale per i lavori sulla SP184 (competenza provinciale dall'incrocio con via Santa Chiara.

5 Acquisizioni e disponibilità di aree

5.a Espropriazioni

Il tracciato delle reti interrate è contenuto nella viabilità pubblica o in disponibilità DIMAR che con la presente concede l'assenso all'opera.

5.b Cave di prestito

Sono presenti nelle vicinanze numero se cave:

Fossano frazione San Lorenzo, materiale alluvionale, Gi.Emme srl.

Marene Castello regine, materiale alluvionale, SAM S.p.A.

Trinità, Cascina Boetti, materiale alluvionale, Giraudo.

Sono inotre presenti numerosi siti di conferimento:

Fossano, Negro escavazioni

Cherasco, C.R.M.

5.c Posizionamento cantieri

I cantieri per la realizzazione possono essere ubicati in corrispondenza dell'area DIMAR.

6 Indirizzi per la redazione del progetto definitivo

6.a Problematiche

Occorre verificare in dettaglio tutte le interferenze con i sottoservizi.

7 Cronoprogramma dei lavori

Per l'intera opera

Progettazione definitiva 1 mese
Approvazione 1 mese
Progettazione esecutiva 1 mese
Approvazione 1 mese
Affidamento incarico 2 mesi

Esecuzione lavori 18 mesi

Collaudo 1 mese

8 Indicazioni per l'accessibilità, l'utilizzo e la manutenzione delle opere, degli impianti e servizi esistenti

Prima dell'appalto dovrà esser redatto apposito fascicolo di manutenzione.

Le dimensioni dei pozzetti deve essere idonea ad una facile manutenzione.

La posa, vista la limitata pendenza deve essere effettuata con la massima cura.